Arduino Ultrasonic Range Detection Sensor

A guide to using the Arduino Ultrasonic Range Detection Sensor with Arduino in order to
calculate distances from objects. In this case I’'m also altering the output of an LED with PWM
according to how close an object is to the sensor. So the nearer you are the brighter the LED.

So if we start with the Arduino Ultrasonic Range Detection Sensor, it’s an IC that works by
sending an ultrasound pulse at around 40Khz. It then waits and listens for the pulse to echo back,
calculating the time taken in microseconds (1 microsecond = 1.0 x 10-6 seconds). You can trigger
a pulse as fast as 20 times a second and it can determine objects up to 3 metres away and as near
as 3cm. It needs a 5V power supply to run.

Adding the Arduino Ultrasonic Range Detection Sensor to the Arduino is very easy, only 4 pins to
worry about. Power, Ground, Trigger and Echo. Since it needs 5V and Arduino provides 5V I'm
obviously going to use this to power it. Below is a diagram of my Arduino Ultrasonic Range
Detection Sensor, showing the pins. There are 2 sets of 5 pins, 1 set you can use, the other is for
programming the PIC chip so don’t touch them!

1. Specification:

Working Voltage : 5V(DC)

Working Current : max 15 ma

Working frequency : 40HZ

Output Signal : 0-5V (Output high when obstacle in range)

Sentry Angle : max 15 degree

Sentry Distance : 2cm - 500cm
High-accuracy : 0.3cm

Input trigger signal : 10us TTL impulse
Echo signal : output TTL PWL signal
Size : 45*%20*15mm

I
2 1
i‘

~J Ul
)

n 4

A
s

_ C O 9T f
i a

D DOGO

et 75

40 o

Note : This module is not suitable to connect with electric power, if you need to connect this

- 0.

module with electronic power,then let the GND terminal of this module to be connected
first,otherwise, it will affect the normal work of the module

2. Interface:

1234
1.VCC ; 2.Trig ; 3.Ech

Pin:

1: VCC ; 2: trig (T); 3: echo (R); 4: GND

3. Usage:

Supply module with 5V, the output will be 5V while obstacle in range, or OV if not.

The out pin of this module is used as a switching output when anti-theft module, and without the
feet when ranging modules,

Note : the module should be inserted in the circuit before been power, which avoid producing high
level of misoperation ; if not, then power again.

Module Working Principle:

(1) Adopt IO trigger through supplying at least 10us sequence of high level signal,

(2) The module automatically send eight 40khz square wave and automatically detect whether

receive the returning pulse signal,

(3) If there is signals returning, through outputting high level

and the time of high level continuing is the time of that from the ultrasonic transmitting to

receiving.
Test distance = (high level time * sound velocity (340M/S) / 2,
The circuit:

Very, very simple circuit, I’ve used the breadboard to share the GND connection and to add the
LED which I could probably have done with out the breadboard. You’ll see the most complex

thing is the code later on.

_
Echo to digtal pin 3 (blue) €} /"

LED to PWM Pin 8 (Yellow)

1

The sketch:

All the work is done here, I’ve added code that averages the distance readings to remove some of
the jitter in the results as the DYP-MEOO7 is calculating distances very rapidly and there can be a
lot of fluctuation. Also I convert the time in microseconds to distance by dividing the time by 58.
Why 587 Well because if you take the time in microseconds for a pulse to be sent and received
e.g. for 1 meter it takes about 5764 microseconds — at least from my wall anyway. If I divide this
time by the distance in cm in [will get 57.64 so I just round this up — you can calculate distance in
any other unit with this method.

Here I’ve also decided that for every cm under 255 my LED will get 1 step brighter. I’ve been lazy
here for the sake of the sensors 3 metre range I didn’t see the point in making this any more
complicated. Otherwise I would calculate the brightness on the percentile of proximity out of total

range.

There are three code for you to test , there must be one you can pass the test :

1. Test Code:

int pingPin = 13;

int inPin = 12;

long microseconds;

void setup() {
Serial.begin(9600);
}

void loop() {

long duration, inches, cm;

digital Write(pingPin, LOW);
delayMicroseconds(2);

digital Write(pingPin, HIGH);
delayMicroseconds(10);
digital Write(pingPin, LOW);
delayMicroseconds(2);
pinMode(pingPin, OUTPUT);

pinMode(inPin, INPUT); duration = pulseln(inPin, HIGH);
inches = microsecondsTolnches(duration); cm = microsecondsToCentimeters(duration);
Serial.print(inches);
Serial.print("in, ");
Serial.print(cm);
Serial.print("cm");
Serial.println();

delay(100); }

long microsecondsTolnches(long microseconds) {
return microseconds / 74 / 2; }

long microsecondsToCentimeters(long microseconds) { return microseconds /29 / 2;

2. Example Code —1:

// variables to take x number of readings and then average them
// to remove the jitter/noise from the DYP-MEOQO07 sonar readings

const int numOfReadings = 10; // number of readings to take/ items in the
array

int readings[numOfReadings]; // stores the distance readings in an array
int arraylndex = 0; // arraylndex of the current item in the
array

int total = 0; // stores the cumlative total

int averageDistance = 0; // stores the average value

// setup pins and variables for DYP-MEOO7 sonar device

int echoPin = 2; // DYP-MEOQO07 echo pin (digital 2)
int initPin = 3; // DYP-MEOQO7 trigger pin (digital 3)
unsigned long pulseTime = 0; // stores the pulse in Micro Seconds
unsigned long distance = 0; // variable for storing the distance (cm)

// setup pins/values for LED

int redLEDPin = 9; // Red LED, connected to digital PWM

pin 9

int redLED Value = 0; // stores the value of brightness for the

LED (0 = fully off, 255 = fully on)

//setup

void setup() {
pinMode(redLEDPin, OUTPUT); // sets pin 9 as output
pinMode(initPin, OUTPUT); // set init pin 3 as output
pinMode(echoPin, INPUT); // set echo pin 2 as input

// create array loop to iterate over every item in the array
for (int thisReading = 0; thisReading < numOfReadings; thisReading++) {
readings[thisReading] = 0;
H
// initialize the serial port, lets you view the
// distances being pinged if connected to computer
Serial.begin(9600);
}
// execute
void loop() {

digital Write(initPin, HIGH); // send 10 microsecond pulse
delayMicroseconds(10); // wait 10 microseconds before turning off

digital Write(initPin, LOW); // stop sending the pulse

pulseTime = pulseIn(echoPin, HIGH); // Look for a return pulse, it should be high

as the pulse goes low-high-low
distance = pulseTime/58; // Distance = pulse time / 58 to convert to

cm.

total= total - readings[arraylndex]; // subtract the last distance

readings[arrayIndex] = distance; // add distance reading to array
total= total + readings[arrayIndex]; // add the reading to the total
arrayIndex = arraylndex + 1; // go to the next item in the array

// At the end of the array (10 items) then start again
if (arrayIndex >= numOfReadings) {
arrayIndex = 0;
}
averageDistance = total / numOfReadings; // calculate the average distance
// if the distance is less than 255cm then change the brightness of the LED
if (averageDistance < 255) {

redLEDValue = 255 - averageDistance; // this means the smaller the distance the

brighterthe LED.

}

analogWrite(redLEDPin, redLED Value); // Write current value to LED pins

Serial.println(averageDistance, DEC); // print out the average distance to the
debugger

delay(100); // wait 100 milli seconds before looping
again

}

3. Example Code - 2:

I

//

// PIC16F877 + DYP-ME007 + LCDO03 example

// Written October 2005 by Gerald Coe, using HITECH PIC16 compiler

/! Note - assumes a 20MHz crystal, which is SMHz timer clock

// A 1:4 prescaler is used to give a 1.25MHz timer count (0.8uS per tick)
//

// This code is Freeware - Use it for any purpose you like.

//

T T

#include <pic.h>

#include <stdio.h>

__CONFIG(0x3b32);

#define trig RBO
#define echo RBI

void clrscn(void); // prototypes
void cursor(char pos);

void print(char *p);

void setup(void);

unsigned int get srf04(void);

char s[21]; // buffer used to hold text to print
void main(void)

{

unsigned int range;

setup(); // sets up the PIC16F877 12C port
clrsen(); // clears the LCDO3 disply
cursor(2); // sets cursor to 1st row of LCD03
sprintf(s,"SRF04 Ranger Test"); // text, printed into our buffer
print(s); // send it to the LCDO03
while(1) { // loop forever
range = get_srf04(); // get range from srf04 (round trip flight
time in 0.8uS units)
cursor(24); // sets cursor to 2nd row of LCD03
sprintf(s,"Range = %dcm ", range/72); // convert to cm
print(s); // send it to the LCDO03
cursor(44); // sets cursor to 3rd row of LCDO03
sprintf(s,"Range = %dinch ", range/185); // convert to inches
print(s); // send it to the LCDO03
TMR1H = 0; // 52mS delay - this is so that the
SRF04 ranging is not too rapid
TMRIL = 0; // and the previous pulse has faded
away before we start the next one
T1CON = 0x21; // 1:4 prescale and running
TMRIIF = 0;
while(!TMR1IF); // wait for delay time
TMRI1ON =0; // stop timer

unsigned int get_srf04(void)

{
TMRI1H = 0x(ff; // prepare timer for 10uS pulse
TMRIL = -14;

T1CON = 0x21; // 1:4 prescale and running
TMRIIF = 0;

trig=1; // start trigger pulse
while(!TMR11IF); // wait 10uS
trig = 0; // end trigger pulse
TMRI1ON = 0; // stop timer
TMRI1H = 0; // prepare timer to measure echo pulse
TMRIL = 0;
T1CON = 0x20; // 1:4 prescale but not running yet
TMRIIF = 0;
while(lecho && !TMRI1IF); // wait for echo pulse to start (go high)
TMRI1ON = 1; // start timer to measure pulse
while(echo && |TMRIIF); // wait for echo pulse to stop (go low)
TMR1ON = 0; // stop timer
return (TMR1H<<8)+TMRI1L; // TMRIH:TMRI1L contains flight time of the pulse
in 0.8uS units
}
void clrscn(void)
{
SEN=1; // send start bit
while(SEN); // and wait for it to clear
SSPIF = 0;
SSPBUF = 0xc6; // LCDO02 12C address
while(!SSPIF); // wait for interrupt
SSPIF = 0; // then clear it.
SSPBUF = 0; // address of register to write to
while(!SSPIF); /
SSPIF = 0; /
SSPBUF = 12; // clear screen
while(!SSPIF); /
SSPIF = 0; /
SSPBUF =4; // cursor off
while(!SSPIF); //
SSPIF = 0; /
PEN = 1; // send stop bit
while(PEN); //

void cursor(char pos)

{

SEN = [;
while(SEN);

SSPIF = 0;
SSPBUF = 0xc6;
while(!SSPIF);
SSPIF = 0;

SSPBUF = 0;
while(!SSPIF);
SSPIF = 0;

SSPBUF =2;
while(!SSPIF);
SSPIF = 0;
SSPBUF = pos;
while(!SSPIF);
SSPIF = 0;

PEN=1;
while(PEN);

void print(char *p)

{

SEN=1;
while(SEN);

SSPIF = 0;

SSPBUF = 0xc6;

while(!SSPIF);
SSPIF = 0;

SSPBUF = 0;
while(!SSPIF);
SSPIF = 0;

while(*p) {

SSPBUF = *p++;

// send start bit
// and wait for it to clear

// LCDO02 12C address
// wait for interrupt

// then clear it.

// address of register to write to
//
//

// set cursor
/!
//
//
//
//

// send stop bit
//

// send start bit

// and wait for it to clear

// LCDO02 I2C address
// wait for interrupt
// then clear it.

// address of register to write to

//
1

// write the data

while(!SSPIF); /

SSPIF = 0; /
}
PEN = 1; // send stop bit
while(PEN); /

void setup(void)

{

unsigned long x;

TRISB = Oxfe; // RBO (trig) is output
PORTB = Oxfe; // and starts low
TRISC = 0xff;

PORTC = 0Oxff;

SSPSTAT = 0x80;

SSPCON = 0x38;

SSPCON2 = 0x00;

SSPADD = 50; // SCL = 91khz with 20Mhz Osc

for(x=0; x<300000L; x++); /] wait for LCDO03 to initialise

