www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

STC12C5A60S2 series MCU
STCI12LESA60S2 series MCU
Data Sheet

STC MCU Limited
www.STCMCU.com

Update date: 2011-7-15

STC MCU Limited. website: www.STCMCU.com 1

CONTENTS

Chapter 1. INtroduction........cccovccccnnericcssscssnnserccssssssssssssecsssssnsssssd

L1 FEALUIES ooeeniiiiee ettt e e et e e e e e aaaeee s 8
1.2 Block diagramcoocuiiieiiiiiiiiieciie et 9
1.3 Pin Configurationscceeeueereeerieenieenieesieeseeesee e e see e e sne e 10
1.4 STC12C5A6082 series Selection Tableccoeeeiieeiiiiiieeeiiiiicccee, 13
1.5 STC12C5A608S2 series Minimum Application System 16
1.6 STC12C5A6082 series Application Circuit for ISP...........cccccveenenne 18
1.7 Pin DESCIIPLIONS .cvvviieieiiieeeiieeeeiieeeeieeeeiteeeeireeesreeeeeereeeesaeeeenaeeenns 20
1.8 Package Dimension Drawings..........cccceeevveeeriiiieeniiiienniieenieeeeieee e 21
1.9 STC12C5A608S2 series MCU naming rules........ccccocueeeveereeenveennenne. 26
1.10 Global Unique Identification Number (ID).........cccccovviieeriieeniieennee, 27
Chapter 2. Clock, Power Management and Reset30
2.1 CIOCK ettt e 30
2.1.1 On-Chip R/C Clock and External Crystal/Clcok are Optional in STC-ISP.exe .30
2.1.2 Divider for System ClOCKcocoiiiiiiiiiiieiieeeeee e 31
2.1.3 How to Know Internal RC Oscillator frequency(Internal clock frequency) 32
2.1.4 Programmable CIOCK OULPUL........cccveviiiiiiiiiieciierieseesit et 35
2.1.4.1 Timer 0 Programmable Clock-out on P3.4..........cccoiiiiiiiiieeee e 37
2.1.4.2 Timer 1 Programmable Clock-out on P3.5.....ccccooiiiiiininiiiiiicceccceeeeee 38
2.1.4.3 Baud Rate Generator and Programmable Clock Output on P1.0ccocoeiiiiiiiiiiiiie 38

2.2 Power Management MOdescoccueerieerieeniienieeeieeeee e 39
2.2.1 SIOW DOWN MOG@.cuiiiiiiiiiiiiieeiieeee ettt beens 40
2.2.2 TdIe MOAE...c..eoiiiiiieieeetee et e 41
2.2.3 Stop / Power Down (PD) MOde........cccoviiiiiiieciesiesieeeee e 42
2.3 RESET SOUICES ...ttt 48
2.3.2 External Low Voltage Detection Reset (high reliable Reset, RST2 pin Reset)... 49
2.3.3 External Low Voltage Detection if not be used RST2 can be as Interrupt........... 50
2.3.4 Software RESET ..ot 54
2.3.5 Power-On Reset (POR).......coiiiiiiiiiiiiecie et 54
2.3.5 MAXS810 power-on-Reset delay........ccceeeeviiiiiiiiiiiiiiiiecieeeece e 55
2.3.3 WatCh-DOg-TiMeTcceiiiiiiieeieeiesiesie sttt ettt e steeste et e sseeseeseenseens 56

2.3.8 Warm Boot and Cold BOOt RESEL.......coeiiieeeiiiieeeeeeeeeeee e 60

Chapter 3. Memory Organizationcc.ccceeeeeeccccsccsnssrecccsssnnnns 61

3.1 Program MEMOTYccoovuiiiiieiiiiiee ettt e e e e e e e e e e e aaeee s 61
3.2 Datad MEMOTY ..ccooouiiiiiieieiiiiie ettt et e e et e e e 62
3.2.1 On-chip Scratch-Pad RAM........cccoooiiiiiiiiiiieiteieee ettt 62
3.2.2 AUXIHATY RAM oovooooeeeeooeeeeeee oo s e e s eees e eeses e eeeees 64
3.2.3 External Expandable 64KB RAM (Off-Chip RAM).....ccccooemiiiiiiniiiiiieeeee 70
3.3 Special Function RegIStErscceevuieeruieeiieeiieeie e 73
3.3.1 Special Function Registers Address Mapcccceeveerierienieeneeniieneeeeeeeeiens 73
3.3.2 Special Function Registers Bits DeSCriptionccceecvverieerieenieenieeneenieerieeniens 74
3.3.3 Dual Data Pointer Register (DPTR)cccoiiviiiiiiiiieieiiceeieeee e 78
Chapter 4. Configurable I/O Ports of STC12C5Axx series80
4.1 T/O Ports Configurationscceeeeueeeiireeseisesieeieieesieesieeeseeesieeeneeeens 80
4.2 P4/PS5 of STC12C5A600S2 SEIICS ..veeeevveeiriiiieriieeeiieeeeireeeeereeeeevee e 85
4.3 T/O POTts MOAES...cccuviiiiiiieieiiie ettt e e 87
4.3.1 Quasi-bidirectional I/Occ.ocoeiiiiiiiiiiieie e 87
4.3.2 PUSh-pUll OULPUL....eeiiiiiiiitiiecieee ettt tee st saaestaesaaenanas 88
4.3.3 Input-only (High-Impedance)Mode...........cccorviiriiiiiiniiiiiiieciece e 88
4.3.4 Open-drain OULPUL.......c.cccerieriieireeie e ete e seesresaestessresesessaessaessaessaesssessnessees 88
4.4 T/O port appliCation NOLESc.veeeeirireeiiieeeiieeeieeeeieeeeeireeerereeeeaeee e 89
4.5 Typical transistor CONtrol CITCUIL......ccuveeeuieeriieeiieeiie e e eee e 89
4.6 Typical diode control CIrCUIL..........eeeeeuiiieiiiiieeciie e 89
4.7 3V/S5V hybrid SYStemM.......cceeviiiiiiiieeiiieeeiiee et 90
4.8 How to make I/O port low after MCU reset.........ccceevveerveenieenieennns 91
4.9 1/0 status while PWM outputing...........ccoeuveeeviieeeiiieeniiee e 91
4.10 I/O drive LED application CIrCUit.........ccccueeereiieenriieeeniieeeieeeeiee e 92
4.11 I/O immediately drive LCD application circuit............ccceeeveeruveennnnns 93
4.12 Using A/D Conversion to scan key application circuit 94
Chapter 5. InStruction SYStemMeeeeeccesccssnnsreccssssssnnssssecssssnnens 95
5.1 Addressing MOdESeeeeuiiieiiiiiieiiiee ettt 95
5.2 Instruction Set SUMMATYcccveieriiieeeiiieeeiieeeeiieeereeeeireeeeeeeeeenees 96
5.3 Instruction Definitions..........cocerieriiiiiiiiienienieiesie e 101
Chapter 6. Interrupt SyStem.......cccccveereesivnercccssnnenccssneeccssnsenes 138
6.1 INterrupt STrUCTULEccuveiiiiiiiieiiee e 140

6.2 INterrupt REGISIET......cocviiieiiiieeiie e 142

6.3 INterrupt PriOTIHIES ...oevvviieeiiiieeiiie e 153

6.4 How Interrupts Are Handledc.oooieeiiiiiiiiieeee e 154
6.5 External INterruptS......ccccceevviieiiiiiiiiieeeeiieeeiee e 155
6.6 ReSPONSE TIME ...evviiiiiiieeiiieeeiee e e 159
6.7 Demo Programs about Interrupts (C and Assembly Programs)......... 160
6.7.1 External Interrupt O (INT() Demo Programs (C and ASM)........ccccvevverernnen. 160
6.7.2 External Interrupt 1 (INT1) Demo Programs (C and ASM)ccooovveveuenene. 164

6.7.3 Programs of P3.4/TO/INT Interrupt(falling edge) used to wake up PD mode .. 168
6.7.4 Programs of P3.5/T1/INT Interrupt(falling edge) used to wake up PD mode .. 170
6.7.5 Program of P3.0/RxD/INT Interrupt(falling edge) used to wake up PD mode. 172
6.7.6 Demo Program of Low Voltage Detection Interrupt used to wake up PD model75

6.7.7 Program of PCA Interrupt used to wake up Power Down mode....................... 178
Chapter 7. Timer/Counter 0/1eecrecciescsssnnneccccsssssssasescccssses 182
7.1 Special Function Registers about Timer/Counter..............c.cceuveenneee. 182
7.2 Timer/Counter 0 Mode of Operation (Compatible with traditional 8051 MCU) 187
7.2.1 Mode 0 (13-bit TIMEr/COUNET) ..c.ieviivieriiiiiririteteteieiee ettt eveeve v eve b s eseaes 187
7.2.2 Mode 1 (16-bit Timer/Counter) and Demo Programs (C and ASM)........ccccevererenenee. 188
7.2.3 Mode 2 (8-bit Auto-Reload Mode) and Demo Programs (C and Assembly Program)... 192
7.2.4 Mode 3 (Two 8-bit Timers/COULETS)c..cvevvivvirereieeieienieeeeeeereereete e ere v ere e eseese s eseanas 195
7.3 Timer/Counter 1 Mode of Operation..........cecceeeevveerieerieenieerieeieenns 196
7.3.1 Mode 0 (13-bit TIMer/COUNET)c..cieviiuiirierirereieieiee ettt ere et ebe s s 196
7.3.2 Mode 1 (16-bit Timer/Counter) and Demo Programs (C and ASM)........cccceevevereenee. 197
7.3.3 Mode 2 (8-bit Auto-Reload Mode) and Demo Programs (C and ASM)...........cccocuenee. 201
7.4 Programmable Clock Output and Demo Programs (C and ASM) 204
7.4.1 Timer 0 Programmable Clock-out on P3.4 and Demo Program........................ 206
7.4.2 Timer 1 Programmable Clock-out on P3.5 and Demo Program........................ 209
7.4.3 Baud Rate Generator Programmable Clock-Out on P1.0 and Demo Program.. 212
7.5 Application Notes for Timer in practiCe........ccceevevvreerreeeerreeeriereeennne. 219
Chapter 8. Serial Interface (UART)...cccccvveerriccccsccnnnereeccsscesss 220
8.1 UART with enhanced function............ccooceeniiniiiniiiniiiiceeee 220
8.1.1 Special Function Registers about UART 1ccooovvviiiiiiiiciiiiiiiecie e, 220
8.1.2 UARTT Operation MOAEScceeecvieiiiiiiiieeiieeiieesieeeieesreeeieeeieeeseveesereesnnee e 225
8.1.2.1 Mode 0: 8-Bit Shift REZISEIeeiiiiieieieii e 225
8.1.2.2 Mode 1: 8-Bit UART with Variable Baud Rate...........c.ccoceoveinininiininiciencncieene 227
8.1.2.3 Mode 2: 9-Bit UART with Fixed Baud Rate...........cceoevirieieniiieiecceeeeeeee e 229

8.1.2.4 Mode3: 9-Bit UART with Variable Baud Rate............cccccoovviiiiiiiiiiiicieecee e 231

8.1.3 Frame Error DEteCtIONuuuueiiiiiiiieieieieeiieeeeeeeeeeeeeeee ettt e e 233

8.1.4 Multiprocessor COMMUNICATIONSeeurrierierieeieeieeee e eieeste e seeeeee e seees 233
8.1.5 Automatic Address ReCOZNILIONc.eevieiiiiiiieiie e 234
8.1.6 Buad Rates and Demo Program.............ccceeviieiiieniieciieciecee e 236
8.1.7 Demo Programs about UART1 (C and ASM)cccovviriiiiiiiiiieeieeie e, 240
8.2 Secondary UART (S2)..ccueeriieiiieiieeeieeeieesee et 246
8.2.1 Special Function Registers about S2 (UART2)ccocvviiiiiiiiiiiiieeie e, 246
8.2.3 UART2 Operation MOES.........ccervuieieeiieieeieeiesie e sae e sevesenesenessnessnessnensnes 250
8.2.3.1 Mode 0: 8-bit Shift REGISIETecueeuieiiiiiiiieiiiieeiete et 250
8.2.3.2 Mode 1: 8-bit UART2 with Variable Baud-Rateccccecirininicinininiiiincnciecens 250
8.2.3.3 Mode 2: 9-bit UART2 with Fixed Baud-Ratecoovrvvveeermrrrreeessrreeesiosssnreessessssnee 250
8.2.3.4 Mode 3: 9-bit UART?2 with Variable Baud-Rateccooceevieriiinieneiieieceieeeen 250
8.2.4 Demo Program about Secondary UARTcccccoiiiiiiiiiiiiiiiiiiiit e, 251
Chapter 9. Analog to Digital Converterccceeeueeecrnrecscnneeess 267
9.1 A/D Converter StrUCLUTE.eeruiriiieniienietiiee ettt 267
0.2 Registers for ADCoooiiiiiiieeiie et 269
9.3 Application Circuit of A/D CONVEIterccceevvrireevvieeeiiieeeieeeenne 275
9.4 ADC Application Circuit for Key Scan.........ccccoeevvveeiiiieeiiiieenieeeee, 276
9.5 A/D reference vOltage SOUICEceeevueeeiieeriiieeiieeiieeieeeieeeeeeeeeeens 277
9.6 Program using interrupts to demostrate A/D Conversion 278
9.7 Program using polling to demostrate A/D Conversion 284
Chapter 10. Programmable Counter Array(PCA)290
10.2 SFRs related with PCA......ccccoiiiiiiiceeeee, 290
10.2 PCA/PWM SHIUCTUIC ..ottt 296
10.3 PCA Modules Operation Modeccccuveeriuieeeniiiieeniieeecieeeeiee e 298
10.3.1 PCA Capture MOME......cc.eouieieiiieeiieieieeeee ettt 298
10.3.2 16-bit Software Timer MOdec.cooeerieeiiieiieieeeee e 299
10.3.3 High Speed Output Modecc.eoveiiiriiiieiiieeeee e 300
10.3.4 Pulse Width Modulator Mode (PWM mode)..........ccceeeveerieiinieniecieeieceneene. 301
10.4 Programs for PCA module extended external interrupt 302
10.5 Demo Programs for PCA module acted as 16-bit Timer.................. 305
10.6 Programs for PCA module as 16-bit High Speed Output................. 309
10.7 Demo Programs for PCA module as PWM Output (C and ASM)... 313
10.8 Demo Program for PCA clock base on Timer 1 overflow rate........ 316

10.9 Using PWM achieve D/A Conversion function reference circuit 320

Chapter 11. Serial Peripheral Interface (SPI)......................... 321

11.1 Special Function Registers related with SPL............c.cccoccerinninnnnn. 321
I1.2 SPI SHIUCTUTC...ceiiiiiiiieeeiiee ettt e e e e 325
11.3 SPI Data CommUNICATIONeerueieeiieeiieeiieeiie e 326
11.3.1 SPI CONfIGUIALIONcvvieviieiieiieiieieeie ettt re et esae e enseenseenseenseenns 326
11.3.2 SPI Data Communication MOdescccceevuiriiriiiiienieiieceeeeee e 327
11.3.3 SPIData MOAESceeiieieiiieieeieeie ettt ettt ettt ettt et e 329

11.4 SPI Function Demo Programs (Single Master — Single Slave)...... 331
11.4.1 SPI Function Demo Programs using Interrupts (C and ASM)..........cccecueeneee. 331
11.4.2 SPI Function Demo Programs using Polling (C and ASM)..........ccccceevrenenne. 337

11.5 SPI Function Demo Programs (Each other as the Master-Slave)..... 343
11.5.1 SPI Function Demo Programs using Interrupts (C and ASM)..........cccceveneeee. 343
11.5.2 SPI Function Demo Programs using Polling...........c.cccceevvivviiienieencieeniieeieens 349

11.6 SPI Demo (Single Master Multiple Slave)cccoooeeviieniienieenen. 355
Chapter 12. TAP/ EEPROM.........uuuuiiriiiiiiicvnnnnieccsscssnnsssncccsnns 365
12.1 TAP/ EEPROM Special Function Registers............ccccveeevieeeennnnnnns 366
12.2 STC12C5A608S2 series Internal EEPROM Allocation Table........... 369
12.3 TAP/EEPROM Assembly Language Program Introduction.............. 371
12.4 EEPROM Demo Program (C and ASM).......ccccoeovvviiiiiiieiiieeeieeen, 374
Chapter 13. STC12 series programming tools usage.............. 382
13.1 In-System-Programming (ISP) principle.........cccocvvieviiieeiireeninnns 382
13.2 STC12C5A608S2 series application circuit for ISP............c.cccceee. 383
13.3 PC side application USAZE.........cceeevueeerueeerieeieeeieesie e 385
13.4 Compiler / Assembler Programmer and Emulator 387
13.5 Self-Defined ISP download Democcccooiiiiiiiniiiniiiniiiceee, 387
Appendix A: Assembly Language Programming.......cccceeeeeee. 391
Appendix B: 8051 C Programmingcccceeeccnnenreccsscccnnnsssnces 413

Appendix C: STC12CS5Axx series Electrical Characteristics 423
Appendix D: Program for indirect addressing inner 256B RAM

Appendix F: Use STC MCU common I/O driving LCD Display

... 428
Appendix G: LED driven by an I/O port and Key Scan......... 435
Appendix H: How to reduce the Length of Code using Keil C....
... 436

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Chapter 1. Introduction

STC12C5A608S2 is a single-chip microcontroller based on a high performance 1T architecture 80C51 CPU,
which is produced by STC MCU Limited. With the enhanced kernel, STC12C5A60S2 executes instructions in
1~6 clock cycles (about 6~7 times the rate of a standard 8051 device), and has a fully compatible instruction
set with industrial-standard 80C51 series microcontroller. In-System-Programming (ISP) and In-Application-
Programming (IAP) support the users to upgrade the program and data in system. ISP allows the user to download
new code without removing the microcontroller from the actual end product; IAP means that the device can write
non-valatile data in Flash memory while the application program is running. The STC12C5A608S2 retains all fea-
tures of the standard 80C51. In addition, the STC12C5A60S2 has two extra I/O ports (P4 and P5), a 10-sources,
4-priority-level interrupt structure, 10-bit ADC, two UARTS, on-chip crystal oscillator, a 2-channel PCA and
PWM, SPI, a one-time enabled Watchdog Timer.

1.1 Features

» Enhanced 80C51 Central Processing Unit,1T per machine cycle, faster 6~7 times than the rate of a standard
8051.

* Operating voltage range: 5.5V ~ 3.5V or 2.2V ~ 3.6V (STC12LE5A608S2).

* Operating frequency range: 0- 35MHz, is equivalent to standard 8051:0~420MHz

* On-chip 8/16/20/32/40/48/52/56/60/62K FLASH program memory with flexible ISP/IAP capability

* On-chip 1280 byte RAM: 256 byte scratch-pad RAM and 1024 bytes of auxiliary RAM

* Be capable of addressing up to 64K byte of external RAM

» Dual Data Pointer (DPTR) to speed up data movement

» Code protection for flash memory access

» Excellent noise immunity, very low power consumption

» four 16-bit timer/counter, be compatible with Timer0/Timer1 of standard 8051, 2-channel PCA can be
available as two timers.

* 10 vector-address, 4 level priority interrupt capability

* One enhanced UART with hardware address-recognition and frame-error detection function

» Secondary UART with self baud-rate generator

* One 15 bits Watch-Dog-Timer with 8-bit pre-scaler (one-time-enabled)

» SPI Master/Slave communication interface

* Two channel Programmable Counter Array (PCA)

* 10-bit, 8-channel Analog-to-Digital Converter (ADC)

» Simple internal RC oscillator and external crystal clock

» Power control: idle mode(all interrupt can wake up IDLE mode) , power-down mode(external interrupt can
wake up Power-Down mode) and slow down mode

* Power down mode can be woken-up by PCA_pin, RXD pin, TO/T1 pin and external interrupts (INTO, INT1)

e 44/40/36 programmable I/O ports are available

* Programmable clock output Function. TO output the clock on P3.4,T1 output the clock on P3.5,BRT output the
clock on P1.0

» External low-voltage detector function(P4.6, the EA pin at the pin location of standard 8051)
» Five package type : LQFP-44, LQFP-48 ,PDIP-40, PLCC-44,QFN-40

8 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

1.2 Block diagram

The CPU kernel of STC12C5A608S2 is fully compatible to the standard 8051 microcontroller, maintains all
instruction mnemonics and binary compatibility. With some great architecture enhancements, STC12C5A60S2
executes the fastest instructions per clock cycle. Improvement of individual programs depends on the actual

instructions used.

AUX-RAM
1024 [

RAM ADDR

Register :>

RAM
256B

g

U

i}

<= FLASH
g U ﬁ 64K
B Register | ACC | Stack l
Pointer
II | 1SP1AP
EEIRES Timer 0/1 K=
Address
Enhanced :V'\ Generator
UART [H
Program
ALU
U?s];")l"z <:> <:> Counter
l l (=) PCA
LVD/LVR |—] II II II SPI
»1 Control Port 0,2,3,4,5 ||
RESET—| Unit Portl Latch Latch
| II /ADC II
XTALI1 [I XTAL2] Port 0,2,3.4,5
Port 1 Driver .
-L_I_J— ¢ Driver
] E 7 P10~PL7 II
P10 P17 PO,P2,P3,P4,P5
STC12C5A60S2 Block Diagram
STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

1.3 Pin Configurations

CCP is an abbreviation of Capture, Compare and PWM

P4.1/ECI/MOSI

EX_LVD/P4.6/RST2

P0.4
P0.5
P0.6
P0.7

P03 P50
P0.2 1 P2.4/A12
P0.1 1 P2.3/Al1
P0.0 C—1P2.2/A10
vee LQFP-48 1 P2.1/A9
MISO/RxD2/CCPO/P4.2 1 P2.0/A8
ADCO/CLKOUT2/P1.0 STC12C5A60S2 1 P4.0/SS

ADC1/P1.1
RxD2/ECI/ADC2/P1.2

1 Gnd
1 XTALI

TxD2/CCPO/ADC3/P1.3 1 XTAL2
SS/CCP1/ADC4/P1.4 —1P3.7/RD
P5.2 1 P3.6/WR a
£S
MY nE SO @YY Agdsnzo
LRacdedfggad AEeF<<<
F0F35§53>5> vn\ol\.x\a‘ﬂ:ﬁl\.@m
§§§g§8¢;|;|g|§ sessiizsasy
=< g2 Tz
TERE = SRNRRANG
S59 & =p=) P0.3 22 1 P2.4/A12
2 ce P02 21 A P2.3/A1L
) %% PO1 20 1 P2.2/A10
7s WSl Loreas PERIY
Vee — P2.
USRS STCIZCsAsSz s
. — Gnd
ADCI/P1.1 15 3 XTALI
>, RxD2/ECI/ADC2/P1.2 1431 /= if;?/%
CLKOUT2/ADCO/P1.0] 1 40 Tvee RICEROADCIELS =ty
ADCI/P1.1]2 391P0.0 oo ’
RxD2/ECI/ADC2/P1.2 3 - 38P0.1 SO S o X o~ o
TxD2/CPPO/ADC3/P1.3] 4 o 37P0.2
SS/CPP1/ADC4/P1.4[5 S 36ro3 i i e I I
MOSI/ADC5/P1.5] 6) 351P0.4 NSNS
MISO/ADC6/P1.6 T 7 3 341P0.5 il = ===
SCLK/ADC7/P1.7] 8 33[JP0.6 3o It h = EFE
— P4TRSTH9 323r0.7 =55 gs gl&
INT/RxD/P3.0 C 10 2] 31 EX_LVD/P4.6/RST2 Bad =8 ==
TxD/P3.1] 11 = 30 ALE/P4.5 =58 £ 20
INToP32 12 Q 20 NAP44 2 g9
_INTI/P33 13 = 281P2.7/A15 2 22
CLKOUTO/INT/T0/P3.4] 14 A 27P2.6/A14
CLKOUTI/INT/T1/P3.5] 15 W 26—1P2.5/A13
WR/P3.6] 16 > 25[1P2.4/A12
RD/P3.7E 17 2 24[ar23/All
XTAL2] 18] 23[aP2.2/A10
XTAL1 19 N 221P2.1/A9
Gnd 20 21[1P2.0/A8

10 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

o
223 E£2
v % 35
s OZ
AR =S XA
QUL <A
ooE O
FAN—S 3
VOO A
fafaRatatats)
LLLLLO
TR A=3SA oo —an
ﬁﬁﬁﬁﬁ <t Lo ococo
O O Yl - - ¥
CntnaN—Fona—O ~
o <t <t <t <+ <+ =
MOSI/ADC5/P1.5 39 P04 9
MISO/ADC6/P1.6 38 E3P0.5 @
SCLK/ADC7/P1.7 37E3P0.6 5
___ P47/RST 36 FP0.7 S
INT/RxD/P3.0 PLCC-44 355Ex vppasrst STz =%
SCLK/TxD2/CCP1/P4.3 34 3 P4.17/EC/MOSI DEREa
TxD/P3.1 STCI2CSA6082 5= 1y s 35S ><'<—Cl = it
INTO/P3.2 32 FANA/P4.4 AAA Al oA Ay
__INT1/P3.3 g(l):lPZJ/A]S piiiiiaiiiiiiiiaiag
CLKOUTO/INT/T0/P3.4 1 P2.6/A14 posfe 0T T T T
INT 29 FAP2.5/A13 o B X P2.4/A12
CLKOUTI1/INT/T1/P3.5 NS mANT RSN pooki oo BRI
PO.1 <ilp2.2/Aa10
© NN—TO O~ M PO.0}: 22 <l pP2.1/A9
& gzzdézogggy Veelii QFN-40 22| p2.0/A8
Oxx Ax22=d CLKOUT2/ADCO/P1.0f:: TC12C5A 2 | Gnd
|3|°‘ R ADCL/PL1J5 STC12C5A60S < xTALI
RxD2/ECI/ADC2/P1.2 U XTAL2
TxD2/CCPO/ADC3/P1.3} 25 | p3.7RD
SS/CCP1/ADC4/P1.4}::S _ |p3.6/WR
__ fiEiiiiiisiiisiiiiid
e s
— — =D nnencnenen
S o & Ay & A e
SSCT3REIEEE
ARAEEE E|E =
ss< . Tk
aoE|E S =
eZ4g =
= =5 8 8
& 2
—
|OR®)]
Register PASW is used to set the secondary function of NA/P4.4, ALE/P4.5 and EX LVD/P4.6
Mnemonic| Add Name 7 6 5 4 3 2 1 0 | Reset Value
PASW |BBH| Port-4 switch LVD P4.6|ALE P4.5| NA P4.4 x000,xxxX

NA/P4.4: 0, PASW.4=0 when MCU is reset. NA/P4.4 is weak pull-up and no any function.
1, when PASW.4 is set to 1, NA/P4.4 is as an I/O port (P4.4)
ALE/P4.5: 0, PASW.5=0 when MCU is reset. ALE/P4.5 is as ALE signal which is used to access external data
memory .
1, when PASW.5 is set to 1, ALE/P4.4 is used as an /O port (P4.5)
LVD/P4.6: 0, PASW.6=0 when MCU is reset. EX LVD/P4.6 is as External Low-Voltage Detection function
1, when PASW.6 is set to 1, EX LVD/P4.6 is used as an 1/O port (P4.6)

STC MCU Limited. website: www.STCMCU.com 11

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

In STC-ISP writter/programmer, users can select what RST/P4.7 is used as. the pin RST/P4.7 is as reset function

acquiescently, see the following figure.

Stepd: hetive following options after Next—FowerUp/Cold Reset
MCU Clock: (On—Chip BfC clock (% External Crystal/Clock

<[BESET/F4.T is nsed a={ FP4.7,must use external clnc@
After Power-Up Reset, add extra Reset-DelayTime {» YES (HO
Oscillator Gain(<1ZMHz can select Low): ¢ High Low

Hext Program Code, P1.0fF1.1: f* Hot Related § Need = 0/0

Hext Program Code, eraze EEPROM data to FF: ° YES {» HOD

Register AUXRI1 is used to select whether PCA/PWM/SPI/UART?2 function is on P1 port or P4 port

Mnemonic|Add Name 7 6 5 4 3 2 1 0 | Reset Value
AUXRI |A2H |Auxiliary register 1| - |PCA P4|SPI P4|S2 P4| GF2 | ADRJ| - | DPS | x000,00x0
PCA P4

0 : Default. The PCA function is on P1[4:2]

1 : The PCA function on P1[4:2] is switched to P4[3:1].
ECI is switched from P1.2 to P4.1
PCAO/PWMO is switched from P1.3 to P4.2
PCA1/PWMLI is switched from P1.4 to P4.3

SPI P
0 : Default. The SPI function is on P1[7:4]
1 : The SPI function on P1[7:4] is switched to P4[3:0].
SCLK is switched from P1.7 to P4.3
MOSI is switched from P1.6 to P4.2
MISO is switched from P1.5 to P4.1
SS is switched from P1.4 to P4.0

0 : Default. the UART2(S2) function is on P1[3:2]

1 : The UART2(S2) function on P1[3:2] is switched to P4[3:2].
TxD2 is switched from P1.3 to P4.3
RxD?2 is switched from P1.2 to P4.2

GF2 : General Flag. It can be used by software.

0 : The 10-bit conversion result of ADC is arranged as {ADC_RES[7:0], ADC RESL[1:0]}.
1 : The 10-bit conversion result is right-justified, {ADC RES[1:0], ADC_RESL[7:0]}.

0 : Default. DPTRO is selected as Data pointer.
1 : The secondary DPTR is switched to use.

12 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

1.4 STC12C5A6082 series Selection Table

E External External
Type . ST U (D E | 16-bit External Reset mterrupts Package | Package | Package
Operating R |1 P [PCA/ W| real- which > s .
1T 8051 Flash A|P . . threshold of 40-pin |of 44-pin|of 48-pin
Voltage A M R | 8-bit [A/D|D | time low can wake
MCU (Byte) R|T voltage (B61/0 | 40T/O | (441/O0
V) M |E T IR O (PWM T| voltage nb up power rts) rts) rts)
®) |R M | D/a interrupt | 2" P¢ | “gown | POT'S) | POItS) | porls
configured
(B) mode
STC12C5A60S2 series Selection Table
LQFP/
STC12C5A08S2 | 5.5~3.5 8K 12804 |2-3]2|53K| 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STC12C5A16S2 | 5.5~3.5 | 16K |1280(4 |2-3]2]45K| 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STC12C5A3282 | 5.5~3.5 | 32K |1280(4 |2-3]2]29K| 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STC12C5A40S2 | 5.5~3.5 | 40K |1280(4 |2-3|2|21K| 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STC12C5A48S2 | 5.5~3.5 | 48K |1280(4 |2-3|2]13K| 2 10 Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STC12C5A5282 | 5.5~3.5 | 52K |1280(4 |2-3|2] 9K | 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12C5A56S2 | 5.5~3.5 | 56K |1280(4 |2-3|2| 5K | 2 10 Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STC12C5A60S2 | 5.5~3.5 | 60K |1280(4 |2-3]2] IK | 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
IAP12C5A6282 | 5.5~3.5 | 62K |1280(4 |2-3]2|IAP| 2 10 (Y Y Y 7 PDIP40 PLCC LQFP48
STC12LE5SA60S2 series Selection Table
LQFP/
STCI2LESA08S2| 3.6~2.1 8K 12804 [2-3[2]53K| 2 10 Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI2LESA16S2| 3.6~2.1 16K 112804 |2-3|2]45K| 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI2LE5A32S2(3.6~2.1 | 32K [1280]4 [2-3[2|29K| 2 10 Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12LE5A40S2(3.6~2.1 | 40K [1280]4 [2-3[2[21K| 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12LE5A48S2(3.6~2.1 | 48K [1280]4 [2-3[2|13K| 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI2LE5A52S2(3.6~2.1 | 52K (12804 [2-3[2[9K | 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI2LE5A56S2| 3.6~2.1 | 56K (12804 [2-3[2|5K | 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI2LE5A60S2| 3.6~2.1 | 60K [1280]4 [2-3[2| 1K | 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48
LQFP/
IAP12LE5A62S2| 3.6~2.1 | 62K [1280|4 [2-3[2|IAP| 2 10 |Y Y Y 7 PDIP40 PLCC LQFP48

STC MCU Limited. website: www.STCMCU.com 13

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

E External External
Type . ST u|D 16-bit E External Reset mterl:upts Package | Package [Package
Operating R |1 PCA/ Ww|(P . which . 1l .
1T 8051 Flash AP . real-time | threshold of 40-pin|of 44-pin|of 48-pin
voltage A (M 8-bit |A/D(D| R can wake
MCU (Byte) R(T low voltage| voltage (B61/0 | (401/O | (44 1/0
Y M E T|R PWM T|o interrupt an b up power rts) rts) rts)
®) |RrR D/A M | mterrup f]ﬁ f_ a| down ports) | ports) | ports
B) contigured! jhode
STC12C5A60AD series Selection Table
LQFP/
STC12C5A08AD | 5.5~3.5 | 8K [1280(4|1]|2| 2 10 | Y[53K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STC12C5A16AD | 5.5~3.5 | 16K [1280(4 12| 2 10 | Y [45K Y Y 7 PDIP40 PLCC LQFP438
LQFP/
STCI12C5A32AD | 5.5~3.5 | 32K [1280(4|1|2| 2 10 [Y |29K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12C5A40AD | 5.5~3.5 | 40K [1280(4[1|2| 2 10 [Y|21K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12C5A48AD | 5.5~3.5 | 48K [1280(4[1|2| 2 10 [Y| 13K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI2C5AS52AD | 5.5~3.5 | 52K [1280(4|1|2| 2 10 [Y] 9K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI2C5AS6AD | 5.5~3.5 | 56K [1280(4[1|2| 2 10 [Y] 5K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI2C5A60AD | 5.5~3.5 | 60K [1280(4(1|2| 2 10 [Y] IK Y Y 7 PDIP40 PLCC LQFP48
LQFP/
TAP12C5A62AD | 5.5~3.5 | 62K |1280|4 (12| 2 10 [Y| IAP Y Y 7 PDIP40 PLCC LQFP48
STCI12LE5A60AD series Selection Table
LQFP/
STCI12LESAO8AD| 3.6~2.1 8K |1280(4 1|2 2 10 [Y|53K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI2LESA16AD| 3.6~2.1 16K [1280|412 2 10 [Y |45K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12LESA32AD| 3.6~2.1 32K (128014 (1|2 2 10 [Y |29K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12LESA40AD| 3.6~2.1 40K | 12804112 2 10 [Y|21K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12LESA48AD| 3.6~2.1 48K | 12804112 2 10 [Y] 13K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12LE5AS52AD| 3.6~2.1 52K (128014 (1|2 2 10 [Y] 9K Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12LE5AS6AD| 3.6~2.1 S6K [1280(4 (12 2 10 [Y] SK Y Y 7 PDIP40 PLCC LQFP48
LQFP/
STCI12LE5A60AD| 3.6~2.1 60K [1280(4 (12 2 10 Y] IK Y Y 7 PDIP40 PLCC LQFP48
LQFP/
IAP12LE5A62AD| 3.6~2.1 62K [1280(4 (1|2 2 10 [Y| IAP Y Y 7 PDIP40 PLCC LQFP48

14 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

E External External

Type . ST U|D 16-bit E | External Reset mterr"upts Package | Package | Package

Operating R (I PCA/ Ww| P real- which ? ? ?

1T 8051 voltage Flash A M AlP 8-bit A/ | R | time low threshold can wake of 40-pin|of 44-pin | of 48-pin

MCU 8¢ | (Byte) R(T D voltage (B61/0 | (401/0 | (4410

V) M (E IR PWM T] O [voltage canbe | UP Power orts) orts) orts)

@) |R D/A M interrupt| T¢I down p p p
B) & mode
STC12C5A60PWM series Selection Table

LQFP/

STCI12CSAO08PWM [5.5~3.5 8K |1280]4 1|2 2 N|Y|[53K Y Y 7 PDIP PLCC LQFP48
LQFP/

STCI12CSA16PWM | 5.5~3.5 16K 12804 (1|2 2 N Y [45K Y Y 7 PDIP PLCC LQFP48
LQFP/

STC12C5A32PWM | 5.5~3.5 | 32K [1280]4|1|2] 2 |N]Y[29K Y Y 7 PDIP PLCC LQFP48
LQFP/

STC12C5A40PWM | 5.5~3.5 | 40K (128014 |1|2] 2 |N]Y[2IK Y Y 7 PDIP PLCC LQFP48
LQFP/

STC12C5A48PWM | 5.5~3.5 | 48K (128014 |1|2] 2 |N]Y[I3K Y Y 7 PDIP PLCC LQFP48
LQFP/

STC12C5A52PWM | 5.5~3.5 | 52K (128014 |1|2] 2 |N]Y[9K Y Y 7 PDIP PLCC LQFP48
LQFP/

STC12C5A56PWM | 5.5~3.5 | 56K [1280]4|1|2] 2 |N]Y[5K Y Y 7 PDIP PLCC LQFP48
LQFP/

STCI12C5A60PWM | 5.5~3.5 | 60K [1280]4|1|2] 2 |N]|Y[IK Y Y 7 PDIP PLCC LQFP48
LQFP/

IAP12C5A62PWM | 5.5~3.5 | 62K (128014 |1|2] 2 |N]|Y[IAP Y Y 7 PDIP PLCC LQFP48

STCI12LESA60PWM series Selection Table

LQFP/

STCI2LESA08PWM| 3.6~2.1 8K (128014 (12 2 N|Y|[53K Y Y 7 PDIP PLCC LQFP48
LQFP/

STCI2LESA16PWM| 3.6~2.1 16K (128014 (1]2 2 N|Y|45K Y Y 7 PDIP PLCC LQFP48
LQFP/

STCI2LESA32PWM| 3.6~2.1 32K (128014 (1])2 2 N|Y|29K Y Y 7 PDIP PLCC LQFP48
LQFP/

STCI2LESA40PWM| 3.6~2.1 40K 12801412 2 N|Y|21K Y Y 7 PDIP PLCC LQFP48
LQFP/

STCI2LESA48PWM| 3.6~2.1 48K |128014 1|2 2 N|Y|[13K Y Y 7 PDIP PLCC LQFP48
LQFP/

STCI2LESAS2PWM| 3.6~2.1 52K (128014 (1)2 2 N|Y|[9K Y Y 7 PDIP PLCC LQFP48
LQFP/

STCI2LESAS6PWM| 3.6~2.1 S6K (128014 (1)2 2 N|Y| 5K Y Y 7 PDIP PLCC LQFP48
LQFP/

STCI2LESA60PWM| 3.6~2.1 60K (128014 (1]2 2 N|Y| IK Y Y 7 PDIP PLCC LQFP48
LQFP/

IAP12LESA62PWM | 3.6~2.1 62K (128014 (1]2 2 N|Y|IAP Y Y 7 PDIP PLCC LQFP48

STC MCU Limited. website: www.STCMCU.com 15

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

1.5 STC12C5A608S2 series Minimum Application System

Vin
[cuxoury ADM’ vee [40] . < %C > System power/5V/3V
[Z]apcipi P0.0/ADO J_ Power On SW1
[]ecvapcari2 PO.1/ADI c6 i I
[ccroabcapi s P0.2/AD2 1047 T 10uF
[=1ssicepi/apcap 4 P0.3/AD3 ‘
[T mosvapcsei s P0.4/AD4 =
f [miso/apcerpi.s P0.5/ADS
10uF L | [E]scLr/apcrpry PO.6/AD6
9_|RST/P4.7 P0.7/AD7
10k []R1 [0 rxD/p3.0 EX_LVD/P4.6/RST2
L [T rxprp3.t ALE/P4.5
) [z]iNtors.2 NA/P4.4
[=]inTip33 P2.7/ADIS
@] cLkoutorrops.a P2.6/AD14
[S]cLkouti/Ties.s P2.5/ADI13
[efwrerss P2.4/ADI2
C2<4TpF [O7]rors.7 P2.3/ADII
T8 |XTAL2 P2.2/AD10
L X1 = 19 | XTALI1 P2.1/AD9
|—@ Gnd P2.0/ADS
C3<47pF
-

About reset circuit:

When the clock frequency is lower than 12MHz, it is suggested not to use C1 and R1 replaced by 1K resistor connect to ground
when the clock frequencies is higher than 12MHz, it is recommended to use the second reset function pin
(STC12C5A608S2 series on RST2/EX _LVD/P4.6 pin
STC12C5201AD series on RST2/EX _LVD/P1.2 pin)

About crystals circuit:

If External clock frequency is higher than 33MHz, it is recommendedto directly use external active crystals.

If using internal R/C oscillator clock (At the room temperature circumstance, the clock frequency of 5V
MCU is 11MHz ~ 17MHz, 3V MCU's is 8MHz ~ 12MHz), XTAL1 and XTAL?2 pin should be floated. If external
clock frequency is in 27MHz above, we suggest to use the crystal that its nominal frequency is the fundamental
frequency or directly use external active crystals which clock are input from XTAL1 pin and XTAL2 pin must
be floated. But three partials crystals don't be used. Otherwise as parameter improper collocation, it is possible to
vibrate in the fundamental frequency, and then the actual frequency is only 1/3 of nominal frequency.

16 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:

86-755-82948412

Fax:86-755-82905966

when the clock frequencies is higher than 12MHz, it is recommended to use the second reset function pin. Cl
can be removed and R1 replaced by 1K resistor connect to ground. So the minimum application system is shown

below
\./ Vin 9V - 12V
[cLkout2/ADCO/P1O Vee [40] Al {7805
=] apcipia PO.0/ADO J- Power On SW1
[G]ecvapcapi PO.1/ADI c6 L L
[E]ccroabcspis P0.2/AD2 104 | OuF T
[ssicepi/iancap 4 P0.3/AD3 .
[mosvapcs/pi.s P0.4/AD4 =
[misorapcerpie PO.5/ADS
. [E]scLk/apcrpiy P0.6/AD6
IH=—{|rsT/P47 P0.7/AD7 R2 | |20K
Y Ireomso EX_LVD/P4.6/RST2
[xpp3.1 ALE/P4.5 310k
[2]iNtors.2 NA/P44
[iNTip33 P2.7/ADIS =
@] cLkoutorrops.a P2.6/ADI14
[S]ckoutiripas P2.5/ADI3
e wrpss P2.4/AD12
C2<47pF [Tror3.7 P2.3/ADI1
18 |XTAL2 P2.2/AD10
X 19 |XTALI P2.1/AD9
20 |Gnd P2.0/ADS8
C3<47pF
>
STC MCU Limited. website: www.STCMCU.com 17

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

1.6 STC12C5A608S2 series Application Circuit for ISP

STC3232,STC232,MAX232,SP232 PC COM

7

T1ci+ Vee Vcc System Power/USB +5V
OluF 2 v+ Gnd ||Gnd
e 10T [EPC_RADCOM Pin2) .
_L—E 2+ RIN [FRRETXDCOM Pind) =k
L 5] co- RIOUT[12
1 SWi1
IH - THN [T}
Crour 12N This part of the circuit Power On
N reout[s] hats nothing to do
with the downloads
o+}ui-rio Vee l v
O+UI-PLI
O+Mcu-vce 1K /
O+UI-P3.0 T_| P1.0/ADCO/CLKOUT2 Vee —
O UL-P3L 2_|P1.1/ADC1 ADO/P0.0
O+Gnd
3_|P1.2/ADC2/ECIRXD2 ADI1/P0.1 C6 H cs
7 |P1.3/ADC3/CCPO/TXD2 AD2/P0.2 e 104F
S_|P1.4/ADC4/CCPI/SS AD3/P0.3
6_|P1.5/ADCS/MOSI ADA/P0.4 =
i 7_|P1.6/ADC6/MISO ADS/P0.5
100F T i 8_|P1.7/ADC7/SCLK AD6/P0.6

RST/P4.7 AD7/P0.7

MCU_RxD(P3.0)
10K | |RL 10 |P3.0/RxD/INT RST2/LVD/P4.6

MCU_TxD(P3.1)

P3.1/TxD ALE/P4.5
P3.2/INTO NA/P4.4

P3.3/INTI ADI15/P2.7

=

P3.4/TO/INT/CLKOUTO AD14/P2.6

I?II_II?II?IJJLH

P3.5/T1/INT/CLKOUT1 ADI13/P2.5

oo [&]ps.c/wr ADI12/P2.4
<47p! —
[]p3.7®D ADI1/P2.3
USB+5V TIOUT R1IN GND T8 |XTAL2 ADI0/P2.2
1 1 1 1 II X1 =
6 6 6 6 19 |XTAL1 AD9/P2.1
20 | Gnd ADS/P2.0
USBI Cl<47pF |—|: Gn,
>

Notes:
Traditional 8051's ALE pin regardless of whether access to external data bus, will have a clock frequency
output. The signals is a source of interference to the system. For this reason,STC MCU new added a Enable/
Disable ALE signal output switch, thus reduced MCU internal to external electromagnetic emissions,
improve system stability and reliability. If needs the signal as other peripheral device's clock source, you
can get clock source from CLKOUTO0/P3.4, CLKOUT1/P3.5, CLKOUT2/P1.0 or XTAL2 clock output.
(Recommended a 2000hm series resistor to the XTAL2 pin)

18 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Users in their target system, such as the P3.0/P3.1 through the RS-232 level shifter connected to the computer
after the conversion of ordinary RS-232 serial port to connect the system programming / upgrading client
software. If the user panel recommended no RS-232 level converter, should lead to a socket, with Gnd/P3.1/
P3.0/Vcc four signal lines, so that the user system can be programmed directly. Of course, if the six signal lines
can lead to Gnd/P3.1/P3.0/Vce/P1.1/P1.0 as well, because you can download the program by P1.0/P1.1 ISP ban.
If you can Gnd/P3.1/P3.0/Vcc/P1.1/P1.0/Reset seven signal lines leads to better, so you can easily use "offline
download board (no computer)" .

ISP programming on the Theory and Application Guide to see "STC12C5201AD Series MCU Development /
Programming Tools Help"section. In addition, we have standardized programming download tool, the user can
then program into the goal in the above systems, you can borrow on top of it RS-232 level shifter connected to
the computer to download the program used to do. Programming a chip roughly be a few seconds, faster than the
ordinary universal programmer much faster, there is no need to buy expensive third-party programmer?.

PC STC-ISP software downloaded from the website www.STCMCU.com

STC MCU Limited. website: www.STCMCU.com 19

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

1.7 Pin Descriptions

MNEMONIC LQFP44 | LQFP48 | PDIP40 | PLCC44 | QFN40 [DESCRIPTION

P0.0~P0.7 37-30 40~33 | 39-32 43~36 1 3927 |poreo . Port0 is an 8-bit bi-directional 1/0
port with pull-up resistance. Except being
as GPIO, Port 0 is also the multiplexed low-
order address and data bus during accesses to
external program and data memory.

P1.0/ADCO/CLKOUT?2 40 43 1 2 36 portl : General-purposed I/0 with weak pull-

g};; ﬁgg;/ECI/R . jé j‘; § 2 g; up resistance inside. When s are written into

: X Portl, the strong output driving CMOS onl

PLYADCHOCPUTD2| 43 | 46 | 4 |5 139} i iwo period and then the weak pull-up

Pl:S/ADCS/MOSl 1 5 3 = 1 resistance keep the port high.

P1.6/ADC6/MISO 2 3 7 8 2

P1.7/ADC7/SCLK 3 4] 9 3 ADCn: Analog to Digital Converter Input

P2.0~P2.7 18-25 19-23 21-28 24~31 16~23 |port2 : Port2 is an 8-bit bi-directional /O
port with pull-up resistance. Except being as

26.28 GPIO, Port2 emits the high-order address byte

during accessing to external program and data
memory.

P3.0/RXD 5 6 10 11 5 Port3 : General-purposed 1/0 with weak pull-

P3.1/TXD 7 8 1 13 6 up resistance inside. When 1s are written into

ggggg?ﬁ g 190 g }‘5‘ ; Port3, the strong output driving CMOS only

P3:4/T0/INT/CLKOUTO M) W 1 6) turn-on two period and then the weak pull-

P3.5/T1/INT/CLKOUT] K 2 5 17 0 |uP resistance keep the port high. Port3 also

P3.6/WR 2 13 16 18 11 |serves the functions of various special features

P3.7/RD 13 14 17 19 12 |of STCI2C5A6082.

P4.0/SS 17 18 23 Port4 : Port4 are extended I/O ports such like

P4./ECTMOSI 28 31 34 Portl. It can be available only on LQFP44,

P4.2/CCPO/MISO 39 42 1 LQFP48, PLCC44.

P4.3/CCP1/SCLK 6 7 12

P4.4/NA 26 29 29 32 24

P4.5/ALE 27 30 30 33 25 |ALE: Address Latch Enable. It is used for

P4.6/EX_LVD/RST2 29 32 31 35 26 |external data memory cycles (MOVX)

P4.7/RST 4 5 9 10 4 EX_LVD: External Low Voltage Reset
Detector
RESET: A high on this pin for at least two

RST 4 3 ? 10 4 machine cycles will reset the device.

P5.0 24

P5.1 25 Port5: Port5 are extended I/O ports such like

P5.2 48 Port]. It can be available only on LQFP48.

P5.3 1
Crystall: Input to the inverting oscillator

XTALLI 15 16 19 21 14 |amplifier. Receives the external oscillator
signal when an external oscillator is used.
Crystal2: Output from the inverting amplifier.

XTAL2 14 15 18 20 13 |This pin should be floated when an external
oscillator is used.

VCC 38 41 40 44 35 | Power

Gnd 16 17 20 22 15 |Ground

20

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
1.8 Package Dimension Drawings

LQFP-44 OUTLINE PACKAGE

| D (12mm) _
P D1 (10mm) _
< ” - > VARIATIONS (ALL DIMENSIONS SHOWN IN MM
nnnnnnnnnnm vy SYMBOLS| MIN. | NoM | MAX.
y S I A - - 1.60
133 Al 0.05 - 0.15
! O —
— A2 1.35 1.40 1.45
g cl 0.09 - 0.16
— _ - D 12.00
g . D1 10.00
— E 12.00
| g . El 10.00
\ / y_ e 0.80
I y f' \ | ¢ g 025 0.30 035
21) 22 plating)
L 0.45 0.60 0.75
e
LI 1.00REF
0° 0° 3.5° 7°
NOTES:

1.JEDEC OUTLINE:MS-026 BSB

2.DIMENSIONS D1 AND E1 DO NOT
INCLUDE MOLD PROTRUSION.
ALLOWBLE PROTRUSION IS
0.25mm PER SIDE. D1 AND E1 ARE

GATE PLANE _{_ _ MAXIMUM PLASTIC BODY SIZE
SEATING PLANE T _—k 7'y DIMENSIONS IMCLUDING MOLD
eﬂ

0.25

MISMATCH.

| L 3.DIMENSION b DOES NOT INCLUDE

g DAMBAR PROTRUSION.ALLOWBLE

> < DAMBAR PROTRUSION SHALL NOT
CAUSE THE LEAD WIDTH TO EXCEED
THE MAXIMUN b DIMNSION BY MORE
THAN 0.08mm.

STC MCU Limited. website: www.STCMCU.com 21

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
LQFP-48 OUTLINE PACKAGE

-« D (9mm) > SYMBOL | MIN | NOM | MAX
P D1 (7mm) | A - - 1.60
< g Al 0.05 - 0.15
2 || HHHHHHHHHHHE A2 135 1.40 1.45
A A3 0.59 0.64 0.69
=.= b 0.18 - 0.27
0
= bl 017 | 020 | o023
== c 0.13 - 0.18
[
. e | _ _ _ _'V_ _ _ _ cl 012 | 0127 | 0134
0
pa D 880 | 9.00 [9.0
0
s DI 690 | 700 | 7.10
e E 880 | 9.00 [920
0
El 690 | 7.00 | 7.10
e 0.50
J ------------ L 0.45 | 0.60 | 0.75
Ll 1.00REF
L2 0.25
R1 0.08 - -
R2 0.08 - 0.20
S 0.20 - -

VARIATIONS (ALL DIMENSIONS SHOWN IN MM

I __‘I 1 /WITH PLATING
o [5)

BASE METAL

22 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

PDIP-40 OUTLINE PACKAGE

D (2060mil)

Y

A

40

D O O

21

El

?UUUUUUUUUUUUUUUUUU%‘

A

X
< » SEATING
Yy PLANE
AT 1
=
—p| [SYMBOLS DIMENSIONS IN INCH
MIN NOR MAX
A - - 0.190
Al 0.015 - 0.020
A2 0.15 0.155 0.160
C 0.008 - 0.015
D 2.025 2.060 2.070
E 0.600 BSC
El 0.540 0.545 0.550
L 0.120 0.130 0.140
bl 0.015 - 0.021
b 0.045 - 0.067
€ 0.630 0.650 0.690
0 0 7 15
UNIT: INCH 1 inch = 1000mil
NOTE:
1.JEDEC OUTLINE :MS-011 AC
STC MCU Limited. website: www.STCMCU.com 23

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
PLCC-44 OUTLINE PACKAGE

IA He o A
< = > o A2 |
17 7 PR
OooOoOoOoooonn yy
A o A
18 16 T ¢ +
[T
O 0 T
O |
O |
O -@-EI] - i _¢]
O u| ir
O u|
O u| =]
O u]
28 140 y \ /
OO0 y] —
29 39 A
L =
==
DIMENSIONS IN
DIMENSIONS IN INCH
_\‘Seating Plane SYMBOLS MILLMETERS
MIN NOM MAX MIN NOM MAX

0.165 - 0.180 4.191 - 4.572

0.020 - - 0.508 - -

0.147 - 0.158 3.734 - 4.013

0.026 0.028 0.032 0.660 | 0.711 0.813

0.013 0.017 0.021 0.330 | 0.432 [0.533

0.007 0.010 [0.0013 0.178 | 0.254 [0.330

0.650 0.653 0.656 16.510 | 16.586 | 16.662

NOTE: 0.050BSC 1.270BSC

0.590 0.610 0.630 14.986 | 15.494 | 16.002

A
Al
A2
bl

b

c

D 0.650 0.653 0.656 16.510 | 16.586 | 16.662

E

Lel
Gd
Ge

1.JEDEC OUTLINE :M0-047 AC 0.590 0.610 0.630 14.986 | 15.494 | 16.002

Hd 0.685 | 0.690 | 0.695 || 17.399 | 17.526 | 17.653

2.DATUM PLANE [H | IS LACATED AT THE He 0.685 | 0.690 | 0.695 || 17.399 | 17.526 | 17.653
BOTTOM OF THE MOLD PARTING LINE L 0.100 - 0.112 || 2.540 - 2.845
COINCIDENT WITH WHERE THE LEAD % - - 0.004 - - 0102

EXITS THE BODY. N N
1 inch = 1000 mil
3.DIMENSIONS E AND D DO NOT INCLUDE MODE
PROTRUSION. ALLOWABLE PROTRUSION IS 10
MIL PRE SIDE.DIMENSIONS E AND D DO INCLUDE
MOLD MISMATCH AND ARE DETERMINED

AT DATUM PLANE [H].

4.DIMENSION bl DOES NOT INCLUDE DAMBAR
PROTRUSION.

24 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

QFN-40 OUTLINE PACKAGE

TOP VIEW

BOTTOM VIEW
5.10+0.05 g
< 4.80+0.05 > P 340 .
< 4.50 > 0.40type
l ,
A R 1
i ' UUUGUUUUL N
: | f I) A
i | | -
i | | -
= O — ___|E
=1 K=
e = w
Seld HE T - o7 - BT - & |k
<
. ! ! b=
H | 1\2, 6, | I
& \2
. I S | \o X (e v
#0[] | | }
A 4
\ 4] o
= n0nandnaLg
#1 | . .
| _>| 020 ‘-1».2|1 l—
‘/\& <« >
%,
S
7 < 5.10+0.05 .
4 | 1< 4.80+0.05 o [
Y A

-—

0.203 RET

STC MCU Limited. website: www.STCMCU.com 25

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

1.9 STC12C5A60S2 series MCU naming rules

STCI2 xx 5

XX

XX -- 37 X - XXXX XX

| Pin Number

e.g. 40, 44,48

Package type
e.g. PDIP.LQFP,PLCC

Temperature range
1 : Industrial, -40°C-80°C
C : Commercial, 0°C-70°C

Operating frequency
37 : Up to 37MHz
___ S2: Have Secondary UART, ADC function, PWM and internal EEPROM

AD : Have ADC function, PWM and internal EEPROM, no Secondary UART
PWM: Have PWM and internal EEPROM,no Secondary UART and ADC function

Program space
08:8KB 16:16KB 20:20KB 20:20KB 32:32KB 40:40KB 48 60:60KB etc.

RAM is up to1280 Bytes

Operating Voltage

C :5.5V~33V
LE :2.2V~3.6V

STC IT Series 8051 MCU

Speed is 8~12 times the traditional 8051

26

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

1.10 Global Unique Identification Number (ID)

STC 1T MCU 12C5Axx series, each MCU has a unique identification number (ID). User can use “MOV @Ri”
instruction read RAM unit F1~F7 to get the ID number after power on. If users need to the unique identification

number to encrypt their procedures, detecting the procedures not be illegally modified should be done first.

//The following example program written by C language is to read internal ID number

/* */
/¥ --- STC MCU International Limited */
/* --- Mobile: 13922809991 */
/* --- Fax: 0755-82905966 */
/* --- Tel: 0755-82948409 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the --*/
/* article, please specify in which data and procedures from STC = --*/
/* */
#include<reg51.h>
#include<intrins.h>

sfr IAP_CONTR = 0xC7;

sbit MCU Start Led = P1"7;

//unsigned char self command array[4] = {0x22,0x33,0x44,0x55};

#define Self Define ISP Download Command 0x22

#define RELOAD_ COUNT 0xfb //18.432MHz,12T,SMOD=0,9600bps

void serial port_initial();

void send UART(unsigned char);

void UART Interrupt Receive(void);
void soft reset to ISP_Monitor(void);
void delay(void);

void display MCU_Start Led(void);

void main(void)

{
unsigned chari=0;
unsigned char j = 0;
unsigned char idata *idata point;
STC MCU Limited. website: www.STCMCU.com 27

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412

serial_port_initial();

// display MCU_Start_Led();
// send UART(0x34);
// send UART(0xa7);

idata_point = 0xF1;
for(j=0;j<=6; j++)

{
1= *idata_point;
send UART(i);
idata_point++;
¥
while(1);
¥
void serial_port_initial()
{
SCON = 0x50;
TMOD = 0x21;
THI1 = RELOAD_COUNT;
TL1 = RELOAD_COUNT;
TR1 = 1;
ES = 1;
EA =1,
¥
void send UART (unsigned char 1)
{
ES = 0;
TI = 0;
SBUF = i
while(TI ==0);
TI = 0;
ES = 1;
¥

void UART Interrupt Receive(void) interrupt 4
{
unsigned char k = 0;
if(RI==1)
{
RI = 0;
k = SBUF;

//initialize serial port
//IMCU begin to run when LED is be lighted

//0101,0000 8-bit variable baud rate, No parity
//0011,0001 Timerl as 8-bit auto-reload Timer
//Set the auto-reload parameter

28 STC MCU Limited.

website: www.STCMCU.com

Fax:86-755-82905966

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

if(k==Self Define ISP_Download Command) //Self-define download command
{ delay(); //just delay 1 second
delay();
soft_reset_to ISP_Monitor(); //Soft rese to ISP Monitor
iend_UART(k);
H
else
{
TI = 0;
H

void soft reset to ISP Monitor(void)

{
IAP_CONTR = 0x60; //0110,0000 Soft rese to ISP Monitor
¥
void delay(void)
{
unsigned intj = 0;
unsigned intg = 0;
for(j=0;j<5;j++)
{
for(g=0;2<60000;g++)
{
nop();
nop();
nop();
nop();
nop();
¥
¥
¥
void display MCU_Start Led(void)
{
unsigned chari=0;
for(i=0;i<3;i++)
{
MCU Start Led = 0;
delay();
MCU Start Led = 1;
delay();
MCU Start Led = 0;
¥
¥

STC MCU Limited. website: www.STCMCU.com 29

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

Chapter 2. Clock, Power Management and Reset
2.1 Clock

2.1.1 On-Chip R/C Clock and External Crystal/Clcok are Optional in STC-ISP.exe

STC12C5A608S2 series is STC 1T MCU whose system clock is compatible with traditional 8051 MCU.

There are two clock sources available for STC12C5A60S2. One is the clock from crystal oscillation and the
other is from internal simple RC oscillator. The internal built-in RC oscillator can be used to replace the external
crystal oscillator in the application which doesn't need an exact system clock. To enable the built-in oscillator,
user should enable the option On-Chip R/C Clock by STC-ISP Writer/Programmer. External crystal/clock is
selected first in STC-ISP Writer/Programmer because the manufacturer's selection of STC12C5A60S2 series is

external crystal/clock.

i STC-ISP.exe http:/fwww.STCMCU.com Support Mobile:(86)13¢

Step 1: Select MCU Type.
MC Type AP Memory Range

[STC1205A8052 - oooo - EFFF

StepZ: Open code file and EEFROM file
Start (HEX) Checlk Sum

[[¥ Clear Buffer before Open—Code-File |
n [Clesr Buffer before Open—FEFROM-File |

Stepd: Active following options after Next—Fowerlp/Cold Reszed
MCU Clock: ¢ On—Chip BSC clock % External Crystal/Clock
BESET/F4. T i= used as{ F4.T,must use external clockie EEIET
After Power-1p Resat, add extra Reset-TlelayTime {» YES { HO
Oscillator Gain(<1ZMHz can select Low): @ High Low
Hext Program Code, P1.0fF1.1: (% Hot Related { Heed = 0/0
Hext Program Code, eraze EEPROM data to FF: YES {+ HO

Step 5: Click the Frogramming button then supply MCU power.

ISP Programming | | Ee-Frogramming

r Eeload the target program file antomatically before
ISP-Frogramming each time, in order to debug easily.

r After the target program file is changed, automatically
reload the file, then send ISP-Frogzramming command.

After next-power up/ cold reset
Step 3: Select COM Port, Max Band MCU clock can be:

COM: |COMT | Max Baud: [115200 + 1. On-Chip R/C Clock

If Connection failed, try Max Baud = Min Baud: |2400 | 2 External Crystal/Clock

30 STC MCU Limited. website:

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2.1.2 Divider for System Clock

A clock divider(CLK _DIV) is designed to slow down the operation speed of STC12C5A60S2, to save
the operating power dynamically. User can slow down the MCU by means of writing a non-zero value to the
CLKS[2:0] bits in the CLK_DIV register. This feature is especially useful to save power consumption in idle
mode as long as the user changes the CLKS[2:0] to a non-zero value before entering the idle mode.

CLK_DIV register (Clock Divider)
SFR Name | SFR Address | bit B7 B6 BS B4 | B3 B2 Bl BO
CLK DIV 97H name - - - - - CLKS2 | CLKS1 | CLKSO

B2-B0 (CLKS2-CLKS0) :

000 External crystal/clock or On-Chip R/C clock is not divided (default state)
001 External crystal/clock or On-Chip R/C clock is divided by 2.

010 External crystal/clock or On-Chip R/C clock is divided by 4.

011 External crystal/clock or On-Chip R/C clock is divided by 8.

100 External crystal/clock or On-Chip R/C clock is divided by 16.

101 External crystal/clock or On-Chip R/C clock is divided by 32.

110 External crystal/clock or On-Chip R/C clock is divided by 64.

111 External crystal/clock or On-Chip R/C clock is divided by 128.

rfyee/ @ — - il

: Not-divided : 000
| |

| +2 | 001
I |

I +4 —010
| |

| o]

On-Chip R/C Clock | 8 U __Swsem Clock _
External crystal/clock | | (To and peripherals)

| +16 — 100
I |

| =32 — 101
| |

! +64 — 110
| |

| |

| 128 —{ 111
L - - - e = = o

ya
7

CLKS2,CLKS1,CLKS0

Clock Structure

STC MCU Limited. website: www.STCMCU.com 31

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2.1.3 How to Know Internal RC Oscillator frequency(Internal clock frequency)

STC 1T MCU 12C5Axx series in addition to traditional external clock, but also the option of using the internal
RC oscillator clock source. If select internal RC oscillator, external crystal can be saved. XTAL1 and XTAL2
floating. Relatively large errors due to internal clock, so high requirements on the timing or circumstances have
serial communication is not recommended to use the internal oscillator. User can use “MOV @Ri” instruction
read RAM unit FC~FF to get the internal oscillator frequency of the factory and read RAM unit F8~FB to get
internal oscillator frequency of last used to download programs within the internal oscillator after power on.

//The following example program written by C language is to read internal R/C clock

frequency

/* */
/* --- STC MCU International Limited */
/* -—- Mobile: 13922809991 */
/* -—- Fax: 0755-82905966 */
/* --- Tel: 0755-82948409 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the --*/
/* article, please specify in which data and procedures from STC ~ --*/
/* */
#include<reg51.h>
#include<intrins.h>

sfr IAP_CONTR = 0xC7,

sbit MCU _Start Led = PI~7;

//unsigned char self command array[4] = {0x22,0x33,0x44,0x55};

#define Self Define ISP _Download Command 0x22

#define RELOAD COUNT 0xfb //18.432MHz,12T,SMOD=0,9600bps

void serial_port_initial();

void send UART (unsigned char);

void UART Interrupt Receive(void);
void soft_reset to ISP_Monitor(void);
void delay(void);

void display MCU_Start Led(void);

void main(void)

{

unsigned chari=0;
unsigned char j = 0;

unsigned char idata *idata_point;

32 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

serial_port_initial();

/1 display MCU_Start_Led();
/1 send UART(0x34);
/1 send UART(0xa7);

idata_point = 0xFC;
for(j=0;j<=3;j++)

{
i=*idata_point;
send UART(i);
idata_point++;

H

while(1);

void serial_port_initial()

{
SCON = 0x50;
TMOD = 0x21;
THI1 = RELOAD COUNT;
TL1 = RELOAD COUNT;
TR1 = 1;
ES = 1,
EA = 1;
}
void send UART (unsigned char 1)
{
ES = 0;
TI = 0;
SBUF = i
while(TI ==0);
TI = 0;
ES = 1;
}

void UART _Interrupt_Receive(void) interrupt 4

{

unsigned char k = 0;

//initialize serial port
//IMCU begin to run when LED is be lighted

//0101,0000 8-bit variable baud rate, No parity
//0011,0001 Timerl as 8-bit auto-reload Timer
//Set the auto-reload parameter

if(RI==1)
{
RI = 0;
k = SBUF;
STC MCU Limited. website: www.STCMCU.com 33

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

if(k==Self Define ISP _Download Command)

//Self-define download command

{ delay(); //just delay 1 second
delay();
soft reset to ISP_Monitor(); //Soft rese to ISP Monitor
iend_UART(k);
b
else
{
TI = 0;
b

void soft reset to ISP_Monitor(void)

{

//0110,0000 Soft rese to ISP Monitor

IAP_CONTR = 0x60;
b
void delay(void)
{
unsigned intj = 0;
unsigned intg = 0;
for(j=0;<5;++)
for(g=0;g<60000;g++)
{
nop();
nop();
nop();
nop();
nop();
b
b
b

void display MCU_Start Led(void)
{
unsigned chari=0;
for(i=0;i<3;i++)

{
MCU_Start Led = 0;
delay();
MCU_Start Led = 1;
delay();
MCU_Start Led = 0;
b
b
34 STC MCU Limited. website:

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2.1.4 Programmable Clock Output

STC12C5A608S2 series MCU have three channel programmable clock outputs, they are Timer 0 programmable
clock output CLKOUTO(P3.4/T0), Timer 1 programmable clock output CLKOUT1(P3.5/T1) and Dedicated
Baud-Rate Timer programmable clock output (CLKOUT2/P1.0).

There are some SFRs about programmable clock output as shown below.

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
AUXR Auxiliary register | SEH T0x12|TllelUART_MOxGlBRTRlSZSMODlBRTle|EXTRAM|S1BRS 0000 0000B
CLK_Output PC/\\N/\KF.UPlRXD PIN Il_LlTl PIN [r,lT(] PIN]]‘.l[.VD WAKE |BRTC[.KO |TIC]_KO|TOC[.KO
WAKE_cLKo| Power down SFH 0000 0000B
Wake-up control
register
pry |Dedicated Baud-l 0, 0000 0000B
Rate Timer register

The satement (used in C language) of Special function registers AUXR/WAKE CLKO/BRT:

sfr AUXR = Ox8E; //The address statement of Special function register AUXR
sfr WAKE CLKO = O0x8F; //The address statement of SFR WAKE_CLKO
sfr BRT = 0x9C; //The address statement of Special function register BRT

The satement (used in Assembly language) of Special function registers AUXR/WAKE CLKO/BRT:

AUXR EQU 0x8E ;The address statement of Special function register AUXR
WAKE CLKO EQU 0x8F ;The address statement of SFR WAKE_CLKO
BRT EQU 0x9C ;The address statement of Special function register BRT

1. AUXR: Auxiliary register (Non bit-addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
AUXR 8EH name |TOx12|T1x12| UART MO0x6 |BRTR|S2SMOD| BRTx12 [EXTRAM|S1BRS

TOx12 : Timer 0 clock source bit.

0 : The clock source of Timer 0 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 0 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
T1x12 : Timer 1 clock source bit.

0 : The clock source of Timer 1 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 1 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
UART MOx6 : Baud rate select bit of UART1 while it is working under Mode-0

0 : The baud-rate of UART in mode 0 is SYSclk/12.

1 : The baud-rate of UART in mode 0 is SYSclk/2.
BRTR : Dedicated Baud-Rate Timer run control bit.

0 : The baud-rate generator is stopped.

1 : The baud-rate generator is enabled.
S2SMOD : the baud-rate of UART2 double contol bit.

0 : Default. The baud-rate of UART2 (S2) is not doubled.

1 : The baud-rate UART?2 (S2) is doubled.

STC MCU Limited. website: www.STCMCU.com 35

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

BRTx12 : Dedicated Baud-Rate Timer counter control bit.
0 : The baud-rate generator is incremented every 12 system clocks.
1 : The baud-rate generator is incremented every system clock.
EXTRAM : Internal / external RAM access control bit.
0 : On-chip auxiliary RAM is enabled and located at the address 0x0000 to 0x03FF.
For address over 0x03FF, off-chip expanded RAM becomes the target automatically.
1 : On-chip auxiliary RAM is always disabled.
S1BRS : the baud-rate generator of UART1 select bit.
0 : Default. Select Timer 1 as the baud-rate generator of UART 1
1 : Timer 1 is replaced by the independent baud-rate generator which is selected as the baud-rate of UART. In
other words, timer 1 is released to use in other functions.

2. WAKE_CLKO: CLK_Output Power down Wake-up control register (Non bit-Addressable)

SFR name [Address| bit B7 B6 BS B4 B3 B2 Bl BO
WAKE _CLKO| 8FH |name|PCAWAKEUP|RXD_PIN_IE |T1_PIN_IE | T0_PIN_IE | LVD_WAKE |BRTCLKO|TICLKO|TOCLKO

PCAWAKEUP: When set and the associated-PCA interrupt control registers is configured correctly, the CEXn pin
of PCA function is enabled to wake up MCU from power-down state.

RXD PIN IE: When set and the associated-UART interrupt control registers is configured correctly, the RXD
pin (P3.0) is enabled to wake up MCU from power-down state.

T1 PIN IE: When set and the associated-Timerl interrupt control registers is configured correctly, the T1 pin
(P3.5) is enabled to wake up MCU from power-down state.

TO PIN IE: When set and the associated-Timer(interrupt control registers is configured correctly, the T1 pin
(P3.4) is enabled to wake up MCU from power-down state.

LVD WAKE: When set and the associated-LVD interrupt control registers is configured correctly, the CMPIN
pin is enabled to wake up MCU from power-down state.

BRTCKLO : When set, P1.0 is enabled to be the clock output of Baud-Rate Timer (BRT). The clock rate is
BRG overflow rate divided by 2.

T1ICKLO : When set, P3.5 is enabled to be the clock output of Timer 1. The clock rate is Timer 1overflow rate
divided by 2.

TOCKLO : When set, P3.4 is enabled to be the clock output of Timer 0. The clock rate is Timer Ooverflow rate
divided by 2.

3. BRT: Dedicated Baud-Rate Timer register (Non bit-Addressable)
SFR name |Address| bit B7 B6 BS5 B4 B3 B2 Bl BO
BRT 9CH [name

It is used as the reload register for generating the baud-rate of the UART.

36 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2.1.4.1 Timer 0 Programmable Clock-out on P3.4

TFO Interrupt
Toggle
>{ CLKOUTO
i P3.4
TOC.LKO

Timer/Counter 0 Mode 2: 8-Bit Auto-Reload

STC12C5201AD is able to generate a programmable clock output on P3.4. When TOCLKO/
WAKE CLKO.0 bit in WAKE_CLKO SER is set, TO timer overflow pulse will toggle P3.4 latch to
generate a 50% duty clock. The frequency of clock-out = TO overflow rate/2.
If C/T(TMOD.2) = 0, Timer/Counter 0 is set for Timer operation (input from internal system clock), the
Frequency of clock-out is as following :
(SYSclk) / (256 — THO) / 2, when AUXR.7 / TOx12=1
or (SYSclk/12)/(256—-THO0)/2, when AUXR.7 / TOx12=0

If C/T (TMOD.2) = 1, Timer/Counter 0 is set for Conter operation (input from external P3.4/T0 pin), the

Frequency of clock-out is as following :
T0_Pin_CLK/ (256-THO) / 2

STC MCU Limited. website: www.STCMCU.com 37

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2.1.4.2 Timer 1 Programmable Clock-out on P3.5

- AUXR.6/T1x12=0
TF1 Interrupt

} _ Toggle
O———

AUXR.6/T1x12=1

—0"; 0 CLKOUTI
T1 Pin i P3s
TICLKO

Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

STC12C5201AD is able to generate a programmable clock output on P3.5. When TICLKO/WAKE CLKO.1 bit
in WAKE CLKO SFR is set, T1 timer overflow pulse will toggle P3.5 latch to generate a 50% duty clock. The
frequency of clock-out = T1 overflow rate/2.

If C/T(TMOD.6) = 0, Timer/Counter 1 is set for Timer operation (input from internal system clock), the

Frequency of clock-out is as following :
(SYSclk) / (256 — TH1) / 2, when AUXR.6 / T0x12=1
or (SYSclk/12)/(256-TH1)/2, when AUXR.6 / TOx12=0

If C/T(TMOD.6) = 1, Timer/Counter 1 is set for Conter operation (input from external P3.5/T1 pin), the

Frequency of clock-out is as following :
T1 Pin_CLK/(256-TH1) /2

2.1.4.3 Baud Rate Generator and Programmable Clock OQutput on P1.0

—» To UART

mXRZ/BRTle:O
Toggle
_4\0 g/:c 8 Bits |overflow CLKOUT

AUXR.2/BRTx12-1
P1.0
AUXR.4/BRTR

STC12C5201AD is able to generate a programmable clock output on P1.0. When BRTCLKO bit in
WAKE_CLKO is set, BRT timer overflow pulse will toggle P1.0 latch to generate a 50% duty clock. The
Frequency of Clock-Out = Baud-Rate Timer overflow rate/2.
Namely the Frequency of Clock-Out is shown as below :
(SYScIk) / (256 -BRT)/2, when BRTx12=1
or (SYSclk/12) /(256 — BRT)/2, when BRTx12=0

BRTCLKO

38 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2.2 Power Management Modes

The STC12C5A60S2 core has three software programmable power management mode: slow-down, idle
and stop/power-down mode. The power consumption of STC12C5A60S2 series is about 2mA~7mA in normal
operation, while it is lower than 0.1uA in stop/power-down mode and 1.3mA in idle mode.

Slow-down mode is controlled by clock divider register(CLK DIV). Idle and stop/power-down is managed
by the corresponding bit in Power control (PCON) register which is shown in below.

PCON register (Power Control Register)

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
PCON 87H name | SMOD | SMODO | LVDF | POF GF1 GFO PD IDL

SMOD : Double baud rate of UART interface
0 Keep normal baud rate when the UART is used in mode 1,2 or 3.
1 Double baud rate bit when the UART is used in mode 1,2 or 3.
SMODO : SMO/FE bit select for SCON.7; setting this bit will set SCON.7 as Frame Error function. Clearing it to
set SCON.7 as one bit of UART mode selection bits.
LVDF : Pin Low-Voltage Flag. Once low voltage condition is detected (VCC power is lower than LVD
voltage), it is set by hardware (and should be cleared by software).
POF : Power-On flag. It is set by power-off-on action and can only cleared by software.
Practical application: if it is wanted to know which reset the MCU is used, see the following figure.

In initializtion program,
judge whether POF/PCON.4
have been set or not

POF=0, No

cold boot \

Yes | Power-On Reset external manual reset
or WDT reset
or software reset
Clear POF/PCON.4 or others

7 v

GF1,GF0: General-purposed flag 1 and 0

PD : Stop Mode/Power-Down Select bit..
Setting this bit will place the STC12C5A60S2 MCU in Stop/Power-Down mode. Stop/Power-Down
mode can be waked up by external interrupt. Because the MCU” s internal oscillator stopped in Stop/
Power-Down mode, CPU, Timers, UARTSs and so on stop to run, only external interrupt go on to work.
The following pins can wake up MCU from Stop/Power-Down mode: INTO/P3.2, INT1/P3.3, INT
/TO/P3.4, INT/T1/P3.5, INT/RxD/P3.0, CCPO/P1.3(or P4.2), CCP1/P1.4(or P4.3), EX_LVD/P4.6

IDL : Idle mode select bit.
Setting th1s bit will place the STC12C5A60S2 in Idle mode. only CPU goes into Idle mode. (Shuts off clock to
CPU, but clock to Timers, Interrupts Serial Ports, and Analog Perlpherals are still active.) The following pins

can wake up MCU from Idle mode: INTO/P3. 2, INTI1/P3. 3, INT/TO/P3. 4, INT/T1/P3. 5, INT/RxD/P3.0. Besides,
Timer0 and Timerl and UARTSs interrupt also can wake up MCU from idle mode

STC MCU Limited. website: www.STCMCU.com 30

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

2.2.1 Slow Down Mode

A divider is designed to slow down the clock source prior to route to all logic circuit. The operating frequency of
internal logic circuit can therefore be slowed down dynamically , and then save the power.

User can slow down the MCU by means of writing a non-zero value to the CLKS[2:0] bits in the CLK DIV
register. This feature is especially useful to save power consumption in idle mode as long as the user changes the
CLKS[2:0] to a non-zero value before entering the idle mode.

CLK_DIV register (Clock Divider)

SFR Name

SFR Address

bit

B7 B6 BS B4

B3

B2 B1 B0

CLK_DIV

97TH

name

CLKS2 | CLKSI | CLKSO

B2-B0 (CLKS2-CLKS0) :

000 External crystal/clock or On-Chip R/C clock is not divided (default state)

001 External crystal/clock or On-Chip R/C clock is divided by 2.
010 External crystal/clock or On-Chip R/C clock is divided by 4.
011 External crystal/clock or On-Chip R/C clock is divided by 8.

100 External crystal/clock or On-Chip R/C clock is divided by 16.
101 External crystal/clock or On-Chip R/C clock is divided by 32.
110 External crystal/clock or On-Chip R/C clock is divided by 64.
111 External crystal/clock or On-Chip R/C clock is divided by 128.

r—— - = - = A
: Not-divided : 000
| |
| =2 —1 001
| |
| 4 } 010
| |
| . !
On-Chip R/C Clock | 8 o System Clock
External crystal/clock [[(To CPU and peripherals)
| =16 I 100
| |
| +32 t 101
| |
' +64 —110
| |
| |
| +128 | 111
o
ya
7
CLKS2,CLKS1,CLKS0
Clock Structure
40 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2.2.2 Idle Mode

An instruction that sets IDL/PCON.0 causes that to be the last instruction executed before going into the idle
mode, the internal clock is gated off to the CPU but not to the interrupt, timer, PCA, SPI, ADC, WDT and serial
port functions. The PCA can be programmed either to pause or continue operating during Idle. The CPU status is
preserved in its entirety: the RAM, Stack Pointer, Program Counter, Program Status Word, Accumulator, and all
other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was
activated. ALE and PSEN hold at logic high levels. Idle mode leaves the peripherals running in order to allow
them to wake up the CPU when an interrupt is generated. Timer 0, Timer 1, PWM timer and UART will continue
to function during Idle mode.

There are two ways to terminate the idle. Activation of any enabled interrupt will cause IDL/PCON.0 to be
cleared by hardware, terminating the idle mode. The interrupt will be serviced, and following RETI, the next
instruction to be executed will be the one following the instruction that put the device into idle.

The flag bits (GFO and GF1) can be used to give art indication if an interrupt occurred during normal operation
or during Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is
terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way to wake-up from idle is to pull RESET high to generate internal hardware reset.Since the clock
oscillator is still running, the hardware reset neeeds to be held active for only two machine cycles(24 oscillator
periods) to complete the reset.

STC MCU Limited. website: www.STCMCU.com 41

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
2.2.3 Stop / Power Down (PD) Mode

An instruction that sets PD/PCON.1 cause that to be the last instruction executed before going into the Power-
Down mode. In the Power-Down mode, the on-chip oscillator and the Flash memory are stopped in order to
minimize power consumption. Only the power-on circuitry will continue to draw power during Power-Down.
The contents of on-chip RAM and SFRs are maintained. The power-down mode can be woken-up by RESET
pin, external interrupt INTO ~ INT1, RXD pin, TO pin, T1 pin and PCA input pins—CCPO pin and CCP1 pin.
When it is woken-up by RESET, the program will execute from the address 0x0000. Be carefully to keep RESET
pin active for at least 10ms in order for a stable clock. If it is woken-up from I/O, the CPU will rework through
jumping to related interrupt service routine. Before the CPU rework, the clock is blocked and counted until 32768
in order for denouncing the unstable clock. To use /O wake-up, interrupt-related registers have to be enabled
and programmed accurately before power-down is entered. Pay attention to have at least one “NOP” instruction
subsequent to the power-down instruction if /O wake-up is used. When terminating Power-down by an interrupt,
the wake up period is internally timed. At the negative edge on the interrupt pin, Power-Down is exited, the
oscillator is restarted, and an internal timer begins counting. The internal clock will be allowed to propagate and
the CPU will not resume execution until after the timer has reached internal counter full. After the timeout period,
the interrupt service routine will begin. To prevent the interrupt from re-triggering, the interrupt service routine
should disable the interrupt before returning. The interrupt pin should be held low until the device has timed out
and begun executing. The user should not attempt to enter (or re-enter) the power-down mode for a minimum of 4
us until after one of the following conditions has occured: Start of code execution(after any type of reset), or Exit
from power-down mode.

The following circuit can timing wake up MCU from power down mode when external interrupt sources do not
exist

Operation step:
1. 1/O ports are first configured to push-pull output(strong pull-up) mode

. Writen 1s into ports I/O ports

. the above circuit will charge the capacitor C1

. Writen Os into ports I/O ports, MCU will go into power-down mode

. The above circuit will discharge. When the electricity of capacitor C1 has been discharged less than
0.8V, external interrupt INTx pin will generate a falling edge and wake up MCU from power-down
mode automatically.

W AW

42 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

The following example C program demostrates that power-down mode be woken-up by external interrupt .

/*

*/

/* --—- STC MCU International Limited

*/

/* --- STC 1T Series MCU wake up Power-Down mode Demo ------ */

/* --- Mobile: (86)13922809991
/* --- Fax: 86-755-82905966

/% --- Tel: 86-755-82948412

/* --- Web: www.STCMCU.com

/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */

/*

#include <reg51.h>

#include <intrins.h>

sbit Begin LED =P172;

unsigned char Is Power Down = 0;
sbit Is Power Down LED INTO

sbit Not_Power Down LED INTO
sbit Is Power Down LED INT1

sbit Not Power Down LED INT1
sbit Power Down_Wakeup Pin INTO
sbit Power Down_Wakeup Pin INT1
sbit Normal Work Flashing LED
void Normal Work Flashing (void);

void INT_System _init (void);

void INTO Routine (void);

void INT1 Routine (void);

void main (void)
{
unsigned char j=0;
unsigned char

Begin LED =0;
INT_System_init ();
while(1)

{

P2 = wakeup_counter;
wakeup counter++;
for(j=0; j<2; j++)

{

=PI
= P16
=PI"5;
= P17
= P372;
= P33
= P13

wakeup counter = 0;
//clear interrupt wakeup counter variable wakeup counter

//Begin-LED indicator indicates system start-up
//Set this bit before go into Power-down mode
//Power-Down wake-up LED indicator on INTO

//Not Power-Down wake-up LED indicator on INTO

//Power-Down wake-up LED indicator on INT1

//Not Power-Down wake-up LED indicator on INT1

//Power-Down wake-up pin on INTO
//Power-Down wake-up pin on INT1
//Normal work LED indicator

//system start-up LED

//Interrupt system initialization

Normal Work Flashing();

//System normal work

STC MCU Limited.

website: www.STCMCU.com

43

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Is Power Down = 1; //Set this bit before go into Power-down mode
PCON =0x02; //after this instruction, MCU will be in power-down mode
//external clock stop
nop();
nop();
nop();
nop();
H
H
void INT System_init (void)
{
1TO =0; /* External interrupt 0, low electrical level triggered */
// 1TO =1; /* External interrupt 0, negative edge triggered */
EXO0 =1; /* Enable external interrupt O
IT1 =0; /* External interrupt 1, low electrical level triggered */
// IT1 =1; /* External interrupt 1, negative edge triggered */
EX1 =1; /* Enable external interrupt 1
EA =1; /* Set Global Enable bit
H
void INTO Routine (void) interrupt 0
{
if (Is_Power Down)
{
/Is_Power Down ==1; /* Power-Down wakeup on INTO */
Is_ Power Down = 0;
Is Power Down LED INTO=0;
/*open external interrupt 0 Power-Down wake-up LED indicator */
while (Power Down_Wakeup Pin INTO == 0)
{
/* wait higher */
H
Is Power Down LED INTO=1;
/* close external interrupt 0 Power-Down wake-up LED indicator */
H
else
{
Not Power Down LED INTO=0; /* open external interrupt O normal work LED */
while (Power Down_Wakeup Pin INTO ==0)
{
/* wait higher */
H
Not Power Down LED INTO=1; /* close external interrupt 0 normal work LED */
H
H

44 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

void INT1 Routine (void) interrupt 2

{
if (Is_Power Down)
{
//Is_Power Down ==1; /* Power-Down wakeup on INT1 */
Is Power Down = 0;
Is Power Down LED INT1=0;
/*open external interrupt 1 Power-Down wake-up LED indicator */
while (Power_Down_Wakeup_Pin INT1 == 0)
{
/* wait higher */
H
Is Power Down LED INT1=1;
/* close external interrupt 1 Power-Down wake-up LED indicator */
§
else
{
Not Power Down LED INT1=0; /* open external interrupt 1 normal work LED */
while (Power Down_ Wakeup Pin INT1 ==0)
{
/* wait higher */
H
Not Power Down LED INT1=1; /* close external interrupt 1 normal work LED */
H
H
void delay (void)
{
unsigned int j=0x00;
unsigned int k = 0x00;
for (k=0; k<2; ++k)
{
for (j=0; j<=30000; ++j)
{
nop();
nop();
nop();
nop();
nop();
nop();
nop();
nop();
§
H
H

STC MCU Limited. website: www.STCMCU.com 45

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

void Normal Work Flashing (void)

{
Normal Work Flashing LED = 0;
delay ();
Normal Work Flashing LED = 1;
delay ();

H

The following program also demostrates that power-down mode or idle mode be woken-up by external
interrupt, but is written in assembly language rather than C languge.

/*

/* --- STC MCU International Limited

*/
*/

/* --- STC 1T Series MCU wake up Power-Down mode Demo ------ */

/* --- Mobile: (86)13922809991

/* --- Fax: 86-755-82905966
/% --- Tel: 86-755-82948412

/* --- Web: www.STCMCU.com

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */

/*

*/

« 3 e s e sfe e sfe ke sfe e sk ke sie ke skesie siesie stk sk sl skesie sk skt skt skt skt skl skl kol skl kol skokoskolokokokolokolokolokokskokokok
>

;Wake Up Idle and Wake Up Power Down

- 3fe sfe sfe e she sfe sfe e she sfe sfe s she sfe sfe s she she sfe st sfe she sfe sfe e she sfe sfe e she she sfe s she sk sfe sk she she sk st ske she sfe steske sk sk steske sk sk st skeske sk steokoskoskoskok
s

ORG
AIJMP
ORG
int0_interrupt:
CLR
ACALL
CLR
RETI

ORG
intl_interrupt:
CLR
ACALL
CLR
RETI
ORG
delay:
CLR
MOV
MOV
MOV

0000H
MAIN
0003H

P1.7
delay
EA

0013H

P1.6
delay
EA

0100H

A
RO,
RI,
R2

s

;open P1.7 LED indicator
;delay in order to observe
;clear global enable bit, stop all interrupts

;open P1.6 LED indicator
;;delay in order to observe
;clear global enable bit, stop all interrupts

#02

46 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
delay_loop:
DINZ RO, delay loop
DINZ RI, delay loop
DINZ R2, delay loop
RET
main:
MOV R3, #0 ;P1 LED increment mode changed
;start to run program
main_loop:
MOV A, R3
CPL A
MOV Pl, A
ACALL delay
INC R3
MOV A, R3
SUBB A, #18H
JC main_loop
MOV PlI, #OFFH ;close all LED, MCU go into power-down mode
CLR 1TO ;low electrical level trigger external interrupt 0
; SETB ITO ;negative edge trigger external interrupt 0
SETB EXO0 ;enable external interrupt 0
CLR IT1 ;low electrical level trigger external interrupt 1
; SETB IT1 ;negative edge trigger external interrupt 1
SETB EX1 ;enable external interrupt 1
SETB EA ;set the global enable

;if don't so, power-down mode cannot be wake up

;MCU will go into idle mode or power-down mode after the following instructions

MOV PCON, #00000010B ;Set PD bit, power-down mode (PD = PCON.1)
R NOP
R NOP
R NOP
; MOV PCON, #00000001B ;Set IDL bit, idle mode (IDL = PCON.0)
MOV PI, #0DFH ;1101,1111
NOP
NOP
NOP
WAIT1:
SIMP WAIT1 ;dynamically stop
END
STC MCU Limited. website: www.STCMCU.com 47

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2.3 RESET Sources

In STC12C5A60S2, there are 5 sources to generate internal reset. They are RST pin reset, external low-voltage
detection (P4.6/RST2, the secondary reset function pin RST2 reset), software reset, On-chip power-on-reset(if
delay 200mS after power-on reset, the reset mode is On-chip MAX810 POR timing delay which actully add
200mS delay after power-on reset) and Watch-Dog-Timer reset.

2.3.1 Reset pin

External RST pin reset accomplishes the MCU reset by forcing a reset pulse to RST pin from external.
The P4.7/RST pin is as reset function pin (default). If users need to configure it as I/O port (must use
external clock), they may enable the corresponding option in STC-ISP Writter/Programmer shown
the following figure. If P4.7/RST pin is not be configured as I/O port, it will be as reset function pin
(default) which is the input to Schmitt Trigger and input pin for chip reset. Asserting an active-high
signal and keeping at least 24 cycles plus 10us on the RST pin generates a reset. If the signal on RST
pin changed active-low level, MCU will end the reset state and start to run from the 0000H of user
procedures.

=i STC-ISP.exe hitp:/fwww.STCMCU.com Support Mobile:(86)13¢

Step 1: Select MCU Type.
MY Tvpe AF Memory Range

[FTC12C5A8052 - oooo - EFFF

StepZ: Open code file and EEFREOM file
Start (HEX] Check Sum

o [w Clear Euffer bhefore Open—Code-File |
0 [Clear Buffer before Open—EEFRIM-File |

Step 3. Select COM Fort, Max Baud

COM: (COMT | W Max Baund: 115200 -

If Conmection failed, try Max Baud = Min Baud: (2400 =

Stepd: Actiwe following options after Next-FowerlUp/Cold Resed
MCU Cloek: § On—Chip B/C clock f* External Crystal/Clock

4| BESET/P4.T is used as{ FP4.T,must use external clo@
After Power—Up Beset, add extra Reset-DelayTime f TES { HO
Oscillator Gain(<12MHz can select Low): f* High Low

Hext Program Code, F1.0/F1.1: (% Hot Related { Heed = 0/0

Hext Frogram Code, erase EEFROM data to FF: (YES {« HO

48 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2.3.2 External Low Voltage Detection Reset (high reliable Reset, RST2 pin Reset)

STC12C5A60S2 series MCU add secondary RESET function(RST2/P4.6). The secondary reset function pin
RST2 should be configured in STC-ISP Writter/Programmer shown in the following figure. External reset
threshold voltage is adjustable by means of 2 resistors. When system frequency is up to 12MHz, the secondary
reser fuction is recommended to use.

options |Self-Defined-ISF | Off-Line-ISF] Cheecl: MCU I:Ipti-:-n] i
enable During Hext Fower-Up

F4. B/RESETZ: f» 1. 35V Woltage Reseti { Used az P4.6fT
Clock *1ZMHz, please use P4.B/RESETZ a=z RESETZ

\ User can configure
P4.6 as secondary

WOT_COWTE be write—protected except CLE_WDT © (v Re;et pln'throu.gh
setting this option

WIOT iz enabled antomatically during power-up © YES (+ HO

Stop Watehllog Timer counting in Idle mode (s {

Preszcalar walue of Watehllog Timer 256

Program OK beep: (» YES ¢ HO0 Re-Frogram after (Second)|5 -

Typical application circuit, using EX LVD pin achieve low-voltage-reset function, as shown below.

If power inputing source is 5V DC, then the reference application circuit as bellow: (Note : 7805 output 4V
voltage and use R1 and R2 can achieve the low voltage reset function at 1.33V)

780i| 134- Vee

k=
A70uF. 104
o T T T T Gnd R1f | 20K

- Gny

P4.6/RST2

R | 10K
MCU

If power inputing source is 220V AC, then the reference application circuit as bellow: (Note : 7805 output 8.5V
voltage and use R1 and R2 can achieve the low voltage reset function at 1.33V')

o—o 7805 1B lve
L

470uF
° TT TT Gnd R1[]>100K

P4.6/RST2

MCU

STC MCU Limited. website: www.STCMCU.com 49

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2.3.3 External Low Voltage Detection if not be used RST2 can be as Interrupt

The external low voltage detection function added in P4.6 port of STC12C5A60S2 series MCU can generate an
interrupt when the VCC power drops down to the LVD voltage. User can detect whether the external voltage is
over low by using interrupt or polling. The Low Voltage Detection (LVD) voltage is 1.33V(+5%) and 1.31V (£3%)
for STC12C5A60S2 and STC12LESA60S2 series, respectively.

When the VCC power drops down to the LVD voltage, the Low voltage Flag, LVD bit (PCON.5), will be set by
hardware. (Note that during power-up, this flag will also be set, and the user should clear it by software for the
following Low Voltage detecting.) This flag can also generate an interrupt if bit ELVD (IE.6) is set to 1.

If external low voltage detection interrupt function is needed to continue normal operation during stop/power-
down mode, which can be used to wake up MCU from stop/power-down mode.

Typical application circuit, using P4.6/RST2/EX LVD pin achieve low-voltage-detection function, as
shown below.

o—¢ 7805 1 Vee
-
470uF
o T T TT Gnd Rl
= P4.6/LVD
R2
MCU

If power inputing source is 220V AC, then 7805 output is 11V DC. If power inputing source drop down 160V AC
7805 output 8.5V DC and use R1 and R2 can achieve the low voltage detection function at 1.33V)

Similarly, if P4.6/RST2/EX_LVD is used to external low voltage detection function, STC-ISP Writter/Programmer
should be configured as shown in following figure.

| self-Defined-ISP | 0££-Line-ISP | Check NCU Option| 41 *
enable During Hext Fower-lp

P4.B/RESETZ: (<1.33V Voltage Reset f* Used as P4.8/LVD
CU Clock *12MHz, please use P4 BfEESETZ az RESETZ >\ User can configure

P4.6 as external

WOT CONTE be write—protected except CLE_WIT (+ low voltage dection
function through
WOT iz enabled amtomatically during power—up © TES {+ HO setting this option
Stop WatchDlog Timer counting in Idle mode {+ (%
Frescalar walue of WatechDlog Timer 256

Frogram OK beep: (¢ YES © H0 Re-Program after (Secondl|S -

50 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Some SFRs related to Low voltage detection as shown below.

Reset
Value
PCON 87H Power Control SMOD SMODO | LVDF POF GF1 GF0 PD IDL {0011,0000
Clk_output
WAKE_CLKO| 8FH | Powerdown Wakeup [PCAWAKEUP[RXD_PIN_IE[T1_PIN_IE|TO_PIN_IE|LVD WAKE|BRTCLKO[TICLKO|TOCLKO [0000,0000
Control register

IE ASH| Interrupt Enable EA ELVD EADC ES ETI EX1 ETO | EXO0 [0000,0000

Mnemonic | Add Name B7 B6 B5 B4 B3 B2 Bl BO

Interrupt Priority

1P B8H Low

PPCA PLVD PADC PS PT1 PX1 PTO | PXO [0000,0000

Interrupt Priority

IPH B7H High

PPCAH | PLVDH |PADCH| PSH PTIH | PXIH | PTOH | PXOH [0000,0000

PCON register (Power Control Register)

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
PCON 87H name | SMOD | SMODO | LVDF | POF GF1 GFO0 PD IDL

LVDF : Pin Low-Voltage Flag. Once low voltage condition is detected (VCC power is lower than LVD
voltage), it is set by hardware (and should be cleared by software).

IE: Interrupt Enable Rsgister
SFR name | Address bit B7 B6 BS B4 B3 B2 B1 BO
IE AS8H name EA ELVD | EADC ES ET1 EX1 ETO EXO0

Enable Bit = 1 enables the interrupt .
Enable Bit = 0 disables it .
EA (IE.7): disables all interrupts. if EA = 0,no interrupt will be acknowledged. if EA = 1, each interrupt
source is individually enabled or disabled by setting or clearing its enable bit.
ELVD (IE.6): Low volatge detection interrupt enable bit.

IPH: Interrupt Priority High Register

SFR name | Address bit B7 B6 BS B4 B3 B2 B1 BO
IPH B7H name |PPCAH | PLVDH |[PADCH| PSH | PTIH [PX1H| PTOH | PXOH
IP: Interrupt Priority Register
SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
1IE BS8H name | PPCA | PLVD | PADC PS PT1 | PX1 PTO PX0

PLVDH, PLVD: Low voltage detection interrupt priority control bits.
if PLVDH=0 and PLVD=0, Low voltage detection interrupt is assigned lowest priority(priority 0).
if PLVDH=0 and PLVD=1, Low voltage detection interrupt is assigned lower priority(priority 1).
if PLVDH=1 and PLVD=0, Low voltage detection interrupt is assigned higher priority(priority 2).
if PLVDH=1 and PLVD=1,Low voltage detection interrupt is assigned highest priority(priority 3).

WAKE_CLKO register

bit B7 B6 BS5 B4 B3 B2 B1 BO
name | PCAWAKEUP | RXD_PIN_IE |T1 PIN IE|TO PIN IE|LVD_WAKE|BRTCKLO |[TICKLO|TOCKLO
LVD_ WAKE :When set and the associated-LVD interrupt control registers is configured correctly, the CMPIN
pin is enabled to wake up MCU from power-down state.
BRTCKLO : When set, P1.0 is enabled to be the clock output of Baud-Rate Timer (BRT). The clock rate is BRG
overflow rate divided by 2.

STC MCU Limited. website: www.STCMCU.com 51

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

The program that demostrates the External Low Voltage detection function on P4.6 as shown below:

J* */
;/* --- STC MCU International Limited */
;/* --- STC 1T Series MCU External Low Voltage Detection Demo ---*/
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the --*/
;/* article, please specify in which data and procedures from STC --*/

J* K
RUN _LED EQU P1.0 ;Program normal running LED indicator
ERROR LED EQU P1.1 ;Error LED indicator
Hi Volt LED EQU P1.2 ;Normal voltage LED indicator
Power On_LED EQU P1.3 ;Power-On LED indicator
Low_ Volt LED EQU P1.4 ;Low-Voltage LED indiactor
ORG 0000H
AJMP MAIN
ORG 0100H
MAIN:
MOV SP, #070H ;Initialize stack pointer
SETB RUN _LED ;Demo program start to work
LCALL Delay ;delay
CLR RUN _LED ;Demo program start to work
LCALL Delay ;delay
SETB RUN _LED ;Demo program start to work
MAINT:
MOV A, PCON

JBC ACC.5, Power On 1
CLR ERROR_LED
SETB Power On LED
SETB Hi_Volt LED
SETB Low_Volt LED
ERROR:
LIMP ERROR
Power On_1:
SETB ERROR_LED
CLR Power On_LED
SETB Hi_Volt LED
SETB Low_Volt LED
LCALL Delay ;delay

52 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
Continue_Read:

MOV A, #11011111B

ANL PCON, A

NOP

MOV A, PCON

JBC ACC.5, Low_Voltage
High Voltage:

SETB ERROR_LED

SETB Power On_LED

CLR Hi Volt LED

SETB Low_Volt LED

LIMP Continue Read
Low_Voltage:

SETB ERROR_LED

SETB Power On_LED

CLR Hi Volt LED

SETB Low_Volt LED

LIMP Continue Read
Delay:

CLR A

MOV RO, A

MOV RI, A

MOV R2, #30H
Delay Loop:

DINZ RO, Delay Loop

DINZ RI, Delay Loop

DINZ R2, Delay Loop

RET

END
STC MCU Limited. website: www.STCMCU.com 53

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
2.3.4 Software RESET
Writing an “1” to SWRST bit in [AP_CONTR register will generate a internal reset.

IAP_CONTR: ISP/IAP Control Register
SFR Name SFR Address | bit B7 B6 BS B4 B3 B2 B1 BO
IAP_CONTR C7H name | IJAPEN | SWBS |SWRST|CMD_FAIL| - WT2 WTI1 WTO

TIAPEN : ISP/IAP operation enable.
0 : Global disable all ISP/IAP program/erase/read function.
1 : Enable ISP/IAP program/erase/read function.
SWBS: software boot selection control bit
0 : Boot from main-memory after reset.
1 : Boot from ISP memory after reset.
SWRST: software reset trigger control.
0 : No operation
1 : Generate software system reset. It will be cleared by hardware automatically.
CMD_FAIL: Command Fail indication for ISP/IAP operation.
0 : The last ISP/IAP command has finished successfully.
1: The last ISP/IAP command fails. It could be caused since the access of flash memory was inhibited.

;Software reset from user appliction program area (AP area) and switch to AP area to run program —
MOV IAP_CONTR, #00100000B ;SWBS = 0(Select AP area), SWRST = 1(Software reset)

;Software reset from system ISP monitor program area (ISP area) and switch to AP area to run program
MOV TAP_CONTR, #00100000B ;SWBS = 0(Select AP area), SWRST = 1(Software reset) -
;Software reset from user appliction program area (AP area) and switch to ISP area to run program -
MOV IAP_CONTR, #01100000B ;SWBS = 1(Select ISP area), SWRST = 1(Software reset)

;Software reset from system ISP monitor program area (ISP area) and switch to ISP area to run program
MOV IAP_CONTR, #01100000B ;SWBS = 1(Select ISP area), SWRST = 1(Software reset) —

This reset is to reset the whole system, all special function registers and I/O prots will be reset to the initial value

2.3.5 Power-On Reset (POR)
When VCC drops below the detection threshold of POR circuit, all of the logic circuits are reset.

When VCC goes back up again, an internal reset is released automatically after a delay of 32768 clocks. The
nominal POR detection threshold is around 1.9V for 3V device and 3.3V for 5V device.

The Power-On flag, POF/PCON.4, is set by hardware to denote the VCC power has ever been less than the POR
voltage. And, it helps users to check if the start of running of the CPU is from power-on or from hardware reset
(RST-pin reset), software reset or Watchdog Timer reset. The POF bit should be cleared by software.

54 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2.3.5 MAXS810 power-on-Reset delay

There is another on-chip POR delay circuit s integrated on STC12C5A60S2. This circuit is MAX810—sepcial
reset circuit and is controlled by configuring STC-ISP Writter/Programmer shown in the next figure. MAX810
special reset circuit just add 200mS extra reset-delay-time after power-up reset. So it is another power-on reset.

Si STC-ISP.exe hitpy/fwww.STCMCU.com Support Mobile:(86)13¢

Step 1: Select MCU Type.
MCU Type AP Memory Range

[FTC12CSAR0SE - o000 - EFFF

StepZ:. Open code file and EEFROM file
Start (HEX] Check Sum

[0 [I¥ Clear Buffer before (Open—Code-File |
0 [Clear Buffer before Open—EEFRIM-File |

Step 3: Select COM Fort, Max Baud

COM: (COMT | = Max Baund: (115200 -

If Conmection failed try Max Baud = Min Baud: (2400

Stepd: Actiwe following options after Next-Fowerlp/Cold Resad
MCU Clock: ¢ OnChip EfC clock f* External Crystal/Clock
EESET/P4.T iz used as{ P4 T,must use external clocki* RESET

After Fower—lp Reset, add extra Reset-Delay—Time (¢ YES (HO
O=eillator Gainl <12MHz can select Low): f* High Low

STC MCU Limited. website: www.STCMCU.com 55

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
2.3.3 Watch-Dog-Timer

The watch dog timer in STC12C5A60S2 consists of an 8-bit pre-scaler timer and an 15-bit timer. The timer is
one-time enabled by setting EN. WDT(WDT_CONTR.5). Clearing EN_WDT can stop WDT counting. When
the WDT is enabled, software should always reset the timer by writing 1 to CLR_WDT bit before the WDT
overflows. If STC12C5A60S2 series MCU is out of control by any disturbance, that means the CPU can not run
the software normally, then WDT may miss the "writting 1 to CLR_WDT" and overflow will come. An overflow
of Watch-Dog-Timer will generate a internal reset.

11256 —©
1/128 —0
1/64 —O
1/32 —o
1/16 —o
18§ —0
1/4 —o
12 —o

15-bit timer) WDT Reset

8-bit prescalar

SYSclk/12

IDL/PCON.0 T T 1 I

[
[WDT FLAG] - [EN_WDT[CLR WDT|IDLE WDT]|PS2| Ps1] Pso|
WDT_CONTR

WDT Structure
WDT_CONTR: Watch-Dog-Timer Control Register

SFR name |[Address| bit B7 B6 B5 B4 B3 B2 | Bl | BO
WDT CONTR| OC1H | name |WDT FLAG| - | EN WDT [CLR_WDT|IDLE WDT| PS2 | PS1 | PSO

WDT_FLAG : WDT reset flag.
0 : This bit should be cleared by software.
1 : When WDT overflows, this bit is set by hardware to indicate a WDT reset happened.
EN_WDT : Enable WDT bit. When set, WDT is started.
CLR_WDT : WDT clear bit. When set, WDT will recount. Hardware will automatically clear this bit.
IDLE WDT : WDT IDLE mode bit. When set, WDT is enabled in IDLE mode. When clear, WDT is disabled in
IDLE.

PS2, PS1, PSO : WDT Pre-scale value set bit.
Pre-scale value of Watchdog timer is shown as the bellowed table :

PS2 | PS1 | PSO Pre-scale WDT overflow Time @20MHz

0 0 0 2 39.3 mS

0 0 1 4 78.6 mS

0 1 0 8 157.3 mS

0 1 1 16 314.6 mS

1 0 0 32 629.1 mS

1 0 1 64 1.258S

1 1 0 128 258

1 1 1 256 58

56 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

The WDT overflow time is determined by the following equation:
WDT overflow time = (12 x Pre-scale x 32768) / SYSclk

The SYSclk is 20MHz in the table above.
If SYSclk is 12MHz, The WDT overflow time is :

WDT overflow time = (12 x Pre-scale x 32768) / 12000000 = Pre-scalex 393216 / 12000000
WDT overflow time is shown as the bellowed table when SYSclk is 12MHz:

PS2 | PS1 | PSO Pre-scale WDT overflow Time @12MHz
0 0 0 2 65.5 mS
0 0 1 4 131.0 mS
0 1 0 8 262.1 mS
0 1 1 16 524.2 mS
1 0 0 32 1.0485 S
1 0 1 64 2.0971 S
1 1 0 128 4.1943 S
1 1 1 256 8.3886 S
WDT overflow time is shown as the bellowed table when SYSclk is 11.0592MHz:
PS2 | PS1 | PSO Pre-scale |WDT overflow Time @11.0592MHz
0 0 0 2 71.1 mS
0 0 1 4 142.2 mS
0 1 0 8 284.4 mS
0 1 1 16 568.8 mS
1 0 0 32 1.1377 S
1 0 1 64 227558
1 1 0 128 4.5511 S
1 1 1 256 9.1022 S

Options related with WDT in STC-ISP Writter/Programmer is shown in the following figure

options |Self-Defined-ISF | 0ff-Line-ISF | Check MCU Option| 4| *
enable During Hext Fower-lp

P4 BSRESETZ: © <1.33¥ Voltage Feset (% Used asz F4.6/LVD
MCU Clock *1ZMHz, please use P4.B/EESETZ as RESETZ

WOT_CONTE be write—protected except CLE_WDT {+
WOT iz enabled automatically during power—up f+ YES { HO

Stop WatchDog Timer counting in Idle mode (« YEZ (HO

Frescalar walue of WatchDlog Timer

Program OK beep: (« YES " WO Re-Frogram after (Second)|S -

STC MCU Limited. website: www.STCMCU.com 57

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

The following example is a assembly language program that demostrates STC 1T Series MCU WDT.

/% */
;/* --—- STC MCU International Limited */
;/¥ --- STC 1T Series MCU WDT Demo */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
/% - Tel: 86-755-82948412 */
/% --- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */

3% */
Z WDT overflow time = (12 x Pre-scale x 32768) / SYSclk
WDT_CONTR EQU 0C1H ;WDT address
WDT TIME LED EQU P1.5 ;WDT overflow time LED on P1.5
;The WDT overflow time may be measured by the LED light time
WDT FLAG LED EQU P1.7

;WDT overflow reset flag LED indicator on P1.7
Last WDT Time LED Status EQU 00H

;bit variable used to save the last stauts of WDT overflow time LED indicator

;WDT reset time , the SYSclk is 18.432MHz

;Pre_scale Word EQU 00111100B ;open WDT, Pre-scale value is 32, WDT overflow time=0.68S
;Pre_scale Word EQU 00111101B ;open WDT, Pre-scale value is 64, WDT overflow time=1.36S
;Pre_scale Word EQU 00111110B ;open WDT, Pre-scale value is 128, WDT overflow time=2.72S
;Pre_scale Word EQU 00111111 B ;open WDT, Pre-scale value is 256, WDT overflow time=5.44S

ORG 0000H

AJMP MAIN

ORG 0100H
MAIN:

MOV A, WDT _CONTR ;detection if WDT reset

ANL A, #10000000B

INZ WDT Reset
;WDT_CONTR.7=1, WDT reset, jump WDT reset subroutine
;WDT_CONTR.7=0, Power-On reset, cold start-up, the content of RAM is random

SETB Last WDT Time LED Status ;Power-On reset
CLR WDT_TIME LED ;Power-On reset,open WDT overflow time LED
MOV WDT CONTR, #Pre scale Word ;open WDT

58 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

WAITI:
SIMP WAITI ;wait WDT overflow reset
;WDT CONTR.7=1, WDT reset, hot strart-up, the content of RAM is constant and just like before reset
WDT_Reset:
CLR WDT FLAG LED
;WDT reset,open WDT overflow reset flag LED indicator

JB Last WDT _Time LED_Status, Power Off WDT TIME LED
;when set Last WDT Time LED Status, close the corresponding LED indicator
;clear, open the corresponding LED indicator
;set WDT _TIME LED according to the last status of WDT overflow time LED indicator
CLR WDT TIME LED ;close the WDT overflow time LED indicator
CPL Last WDT _Time LED Statu

;reverse the last status of WDT overflow time LED indicator

WAIT2:

SIMP WAIT2 ;wait WDT overflow reset
Power Off WDT_TIME_LED:

SETB ~ WDT TIME LED ;close the WDT overflow time LED indicator

CPL Last WDT Time LED Status

;reverse the last status of WDT overflow time LED indicator

WAIT3:

SIMP ~ WAIT3 ;wait WDT overflow reset

END

STC MCU Limited. website: www.STCMCU.com 59

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412 Fax:86-755-82905966

2.3.8 Warm Boot and Cold Boot Reset

Reset type Reset source Result
WatchDog System will reset to AP address 0000H
Warm boot Reset Pin and begin running user application
arm boo
20H — IAP _CONTR program
60H — IAP_CONTR System will reset to ISP address 0000H
and begin running ISP monitor program,
if not detected legitimate ISP command,
Cold boot Power-on system will software reset to the user
program area automatically.
60 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Chapter 3. Memory Organization

The STC12C5A608S2 series MCU has separate address space for Program Memory and Data Memory. The logical
separation of program and data memory allows the data memory to be accessed by 8-bit addresses, which can be
quickly stored and manipulated by the CPU.

Program memory (ROM) can only be read, not written to. In the STC12C5A608S2 series, all the program memory
are on-chip Flash memory, and without the capability of accessing external program memory because of no Ex-
ternal Access Enable (/EA) and Program Store Enable (/PSEN) signals designed.

Data memory occupies a separate address space from program memory. In the 12C5A60S2 series, there are
256 bytes of internal scratch-pad RAM and 1024 bytes of on-chip expanded RAM(XRAM). Besides 64K bytes
external expanded RAM also can be accessed.

3.1 Program Memory

Program memory is the memory which stores the program codes for the CPU to execute. There is 8/16/20/32/40/4
8/52/56/62K-bytes of flash memory embedded for program and data storage. The design allows users to configure
it as like there are three individual partition banks inside. They are called AP(application program) region, IAP
(In-Application-Program) region and ISP (In-System-Program) boot region. AP region is the space that user
program is resided. IAP(In-Application-Program) region is the nonvolatile data storage space that may be used
to save important parameters by AP program. In other words, the IAP capability of STC12C5A60S2 provides
the user to read/write the user-defined on-chip data flash region to save the needing in use of external EEPROM
device. ISP boot region is the space that allows a specific program we calls “ISP program” is resided. Inside the
ISP region, the user can also enable read/write access to a small memory space to store parameters for specific
purposes. Generally, the purpose of ISP program is to fulfill AP program upgrade without the need to remove the
device from system. STC12C5A60S2 hardware catches the configuration information since power-up duration
and performs out-of-space hardware-protection depending on pre-determined criteria. The criteria is AP region
can be accessed by ISP program only, IAP region can be accessed by ISP program and AP program, and ISP
region is prohibited access from AP program and ISP program itself. But if the “ISP data flash is enabled”, ISP
program can read/write this space. When wrong settings on ISP-IAP SFRs are done, The “out-of-space” happens
and STC12C5A608S2 follows the criteria above, ignore the trigger command.

After reset, the CPU begins execution from the location 0000H of Program Memory, where should be the starting
of the user’s application code. To service the interrupts, the interrupt service locations (called interrupt vectors)
should be located in the program memory. Each interrupt is assigned a fixed location in the program memory. The
interrupt causes the CPU to jump to that location, where it commences execution of the service routine. External
Interrupt 0, for example, is assigned to location 0003H. If External Interrupt O is going to be used, its service
routine must begin at location 0003H. If the interrupt is not going to be used, its service location is available as
general purpose program memory.

The interrupt service locations are spaced at an interval of 8 bytes: 0003H for External Interrupt 0, 000BH for
Timer 0, 0013H for External Interrupt 1, 001BH for Timer 1, etc. If an interrupt service routine is short enough (as
is often the case in control applications), it can reside entirely within that 8-byte interval. Longer service routines
can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

STC MCU Limited. website: www.STCMCU.com 61

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

3FFFH Type Program Memory
STC12C/LE5A08S2/AD | 0000H~1FFFH (8K)
16K STC12C/LE5A16S2/AD | 0000H~3FFFH (16K)
Program Flash STC12C/LE5A20S82/AD | 0000H~4FFFH (20K)
Memory STC12C/LE5A3282/AD | 0000H~7FFFH (32K)
STC12C/LE5A40S2/AD | 0000H~9FFFH (40K)
STC12C/LE5A48S2/AD | 0000H~0BFFFH (48K)
STC12C/LE5A5282/AD | 0000H~0CFFFH (52K)
0000H STCI2C/LE5A56S2/AD | 0000H~0DFFFH (56K)
STC12C5A16S2 Program Memory STCI12C/LE5A60S2/AD | 0000H~OEFFFH (60K)
IAP12C/LE5A62S2/AD | 0000H~OF7FFH (62K)

3.2 Data Memory
3.2.1 On-chip Scratch-Pad RAM

Just the same as the conventional 8051 micro-controller, there are 256 bytes of SRAM data memory plus 128
bytes of SFR space available on the STC12C5A60S2. The lower 128 bytes of data memory may be accessed
through both direct and indirect addressing. The upper 128 bytes of data memory and the 128 bytes of SFR
space share the same address space. The upper 128 bytes of data memory may only be accessed using indirect
addressing. The 128 bytes of SFR can only be accessed through direct addressing. The lowest 32 bytes of data
memory are grouped into 4 banks of 8 registers each. Program instructions call out these registers as R0 through
R7. The RSO and RS1 bits in PSW register select which register bank is in use. Instructions using register
addressing will only access the currently specified bank. This allows more efficient use of code space, since
register instructions are shorter than instructions that use direct addressing. The next 16 bytes (20H~2FH) above
the register banks form a block of bit-addressable memory space. The 80C51 instruction set includes a wide
selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions.
The bit addresses in this area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by either direct or indirect addressing while the Upper 128
can only be accessed by indirect addressing. SFRs include the Port latches, timers, peripheral controls, etc.
These registers can only be accessed by direct addressing. Sixteen addresses in SFR space are both byte- and bit-
addressable. The bit-addressable SFRs are those whose address ends in OH or 8H.

FF
7FH
ioh 128 Special Function
Hig Bytes Registers (SFRs)
Internal RAM
30H
80 2FH
7F bit Addressable
Low 128 Bytes 20H
Internal RAM - Bank 3 1FH
17H
00 LOH Bank 2
On-chip Scratch-Pad RAM ogH Bank 1 OFH
Bank 0 07H
00H

Lower 128 Bytes of internal SRAM

STC MCU Limited. website: www.STCMCU.com

62

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

PSW register
SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl B0
PSW DOH | name CY AC FO RS1 RSO oV F1 P
CY: Carry flag.

This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow
(subtrac-tion). It is cleared to logic 0 by all other arithmetic operations.
AC: Auxilliary Carry Flag.(For BCD operations)
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow
from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic operations
FO : Flag 0.(Available to the user for general purposes)
RS1: Register bank select control bit 1.
RSO0: Register bank select control bit 0.
[RS1 RSO] select which register bank is used during register accesses

RS1 RSO Working Register Bank(RO~R7) and Address
0 0 Bank 0(00H~07H)
0 1 Bank 1(08H~0FH)
1 0 Bank 2(10H~17H)
1 1 Bank 3(18H~1FH)

OV : Overflow flag.
This bit is set to 1 under the following circumstances:
* An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
* A MUL instruction results in an overflow (result is greater than 255).
* A DIV instruction causes a divide-by-zero condition.
The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other
cases.
F1 : Flag 1. User-defined flag.
P : Parity flag.
This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared if the
sum is even.

SP: Stack Pointer.
The Stsek Pointer Register is 8 bits wide. It is incremented before data is stored during PUSH and CALL
executions. The stack may reside anywhere in on-chip RAM.On reset, the Stack Pointer is initialized to
07H causing the stack to begin at location 08H, which is also the first register (RO) of register bank
1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in
the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

STC MCU Limited. website: www.STCMCU.com 63

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

3.2.2 Auxiliary RAM

There are 1024 bytes of additional data RAM available on STC12C5A60S2. They may be accessed by the
instructions MOVX @Ri or MOVX @DPTR. A control bit - EXTRAM located in AUXR.1 register is to control
access of auxiliary RAM. When set, disable the access of auxiliary RAM. When clear (EXTRAM=0), this
auxiliary RAM is the default target for the address range from 0x0000 to 0x03FFand can be indirectly accessed
by move external instruction, “MOVX @Ri” and “MOVX @DPTR”. If EXTRAM=0 and the target address is
over 0x03FF, switches to access external RAM automatically. When EXTRAM=0, the content in DPH is ignored
when the instruction MOVX @Ri is executed.

For KEIL-C51 compiler, to assign the variables to be located at Auxiliary RAM, the “pdata” or “xdata” definition
should be used. After being compiled, the variables declared by “pdata” and “xdata” will become the memories
accessed by “MOVX @Ri” and “MOVX @DPTR?”, respectively. Thus the STC12C5A60S2 hardware can access

them correctly. FFFF
03FF
1024 Bytes 64K Bytes
expanded RAM off-chip
Expanded RAM
0000
Auxiliary RAM
0000
External RAM
AUXR register
Mnemonic| Add Name 7 6 5 4 3 2 1 0 Reset Value

AUXR | 8EH |Auxiliary Register |TOx12| T1x12 |[UAR_MOx6| BRTR |S2SMOD| BRTx12 | EXTRAM | S1BRS | 0000,0000

T0x12 : Timer 0 clock source bit.

0 : The clock source of Timer 0 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 0 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
T1x12 : Timer 1 clock source bit.

0 : The clock source of Timer 1 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 1 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
UART_MOx6 : Baud rate select bit of UART1 while it is working under Mode-0

0 : The baud-rate of UART in mode 0 is SYSclk/12.

1 : The baud-rate of UART in mode 0 is SYSclk/2.
BRTR : Dedicated Baud-Rate Timer run control bit.

0 : The baud-rate generator is stopped.

1 : The baud-rate generator is enabled.
S2SMOD : the baud-rate of UART2 double contol bit.

0 : Default. The baud-rate of UART2 (S2) is not doubled.

1 : The baud-rate UART?2 (S2) is doubled.
BRTx12 : Dedicated Baud-Rate Timer counter control bit.

0 : The baud-rate generator is incremented every 12 system clocks.

1 : The baud-rate generator is incremented every system clock.

64 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

EXTRAM : Internal / external RAM access control bit.
0 : On-chip auxiliary RAM is enabled and located at the address 0x0000 to 0xO3FF.
For address over 0x03FF, off-chip expanded RAM becomes the target automatically.
1 : On-chip auxiliary RAM is always disabled.
S1BRS : the baud-rate generator of UART1 select bit.
0 : Default. Select Timer | as the baud-rate generator of UART1
1 : Timer 1 is replaced by the independent baud-rate generator which is selected as the baud-rate of UART.
In other words, timer 1 is released to use in other functions.

0xFFFF FFFFH
oft-chip
expanded RAM
63KB off-chip
expanded RAM
64KB
0x0400
0x03FF
Auxiliary RAM 1KB
0x0000
0000H

EXTRAM=0 EXTRAM=1

STC MCU Limited. website: www.STCMCU.com 65

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

An example program for internal expanded RAM demo of STC12C5A60S2:

J* */
;/* --- STC MCU International Limited */
;/* --- STC 1T Series MCU internal expanded RAM Demo ----------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% --—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC ~ */
J* */
#include<reg51.h>
#include<intrins.h>

/*use nop () function */

sfr AUXR = 0x8e;
sbit ERROM_LED = PI1"5;
sbit OK LED =PI1"7;

void main ()

{

unsigned int array _point = 0;

/*Test-array: Test array one[512], Test array two[512] */
unsigned char xdata Test_array one[512] =

{
0x00, 0x01 0x02, 0x03, 0x04 0x05, 0x006, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, Ox11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, Ox1la, 0x1b, Oxlc, Ox1d, Oxle, Ox1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, Ox4a, 0x4b, 0x4c, 0x4d, Ox4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6a, 0x6b, 0x6¢, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, Oxal, Oxa2, 0xa3, Oxa4, 0xa5, 0xa6, 0Oxa7,
0xa8, 0xa9, Oxaa, Oxab, Oxac, Oxad, Oxae, Oxaf,
66 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

0xb0, 0xbl, 0xb2, 0xb3, 0xb4, 0xb3, 0xb6, 0xb7,
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, Oxbe, 0xbf,
0xc0, Oxcl, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, Oxca, 0xcb ,0xce, Oxcd, Oxce, 0xcf,
0xdo, 0xdl, 0xd2, 0xd3, 0xd4, 0xds, 0xd6, 0xd7
0xd8, 0xd9, Oxda, 0xdb, Oxdc, 0xdd, Oxde, 0xdf,
0xe0, Oxel, 0xe2, 0xe3, Oxe4, 0xes, 0xe6, 0xe7,
0xe8, 0xe9, Oxea, Oxeb, Oxec, Oxed, Oxee, Oxef,

0x10, 0xfl, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0x18, 0x19, Oxfa, 0xfb, Oxfc, 0xfd, Oxfe, Oxft,

Oxft, Oxfe, 0xfd, Oxfc, 0xfb, Oxfa, 0x19, 0x18,
0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xfl, 0xf0,
Oxef, Oxee, Oxed, Oxec, Oxeb, Oxea, 0xe9, 0xe8,
0xe7, 0xe6, 0xes, Oxe4, 0xe3, 0xe2, Oxel, 0xe0,
0xdf, Oxde, 0xdd, Oxdc, 0xdb, Oxda, 0xd9, 0xd8,
0xd7, 0xd6, 0xds, 0xd4, 0xd3, 0xd2, 0xdl, 0xdo,
0xcf, Oxce, Oxcd, Oxcc, 0xcb, Oxca, 0xc9, 0xc8,
0xc7, 0xc6, 0xc5, 0xc4, 0xc3, 0xc2, Oxcl, 0xc0,
0xbf, Oxbe, 0xbd, 0xbc, 0xbb, 0xba, 0xb9, 0xb8,
0xb7, 0xb6, 0xb3, 0xb4, 0xb3, 0xb2, 0xbl, 0xb0,
Oxaf, Oxae, Oxad, Oxac, Oxab, Oxaa, 0xa9, 0xa8,
Oxa7, 0xa6, 0xa5, Oxa4, 0xa3, 0Oxa2, Oxal, 0xa0,
0x9f, 0x9e, 0x9d, 0x9c, 0x9b, 0x9a, 0x99, 0x98,
0x97, 0x96, 0x95, 0x94, 0x93, 0x92, 0x91, 0x90,
0x8f, 0x8e, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88,
0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80,
0x7f, 0x7e, 0x7d, 0x7c, 0x7b, 0x7a, 0x79, 0x78,
0x77, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71, 0x70,
0x6f, 0x6e, 0x6d, 0x6¢, 0x6b, 0x6a, 0x69, 0x68,
0x67, 0x66, 0x65, 0x64, 0x63, 0x62, 0x61, 0x60,
0x5f, 0x35e, 0x5d, 0x5c, 0x5b, 0x5a, 0x59, 0x58,
0x57, 0x56, 0x55, 0x54, 0x53, 0x52, 0x51, 0x50,
0x4f, Ox4e, 0x4d, 0x4c, 0x4b, 0x4a, 0x49, 0x48,
0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0x41, 0x40,
0x3f, 0x3e, 0x3d, 0x3c, 0x3b, 0x3a, 0x39, 0x38,
0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30,
0x2f, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28,
0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20,
Ox1f, Oxle, Ox1d, Oxlc, 0x1b, Ox1la, 0x19, 0x18,
0x17, 0x16, 0x15, 0x14, 0x13, 0x12, Ox11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00

}

unsigned char xdata Test_array two[512] =

{
0x00, 0x01 0x02, 0x03, 0x04 0x03, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

STC MCU Limited. website: www.STCMCU.com 67

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, Ox1a, 0x1b, Oxlc, 0x1d, Oxle, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x33, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, Ox4a, 0x4b, Ox4c, 0x4d, Ox4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x63, 0x66, 0x67,
0x68, 0x69, Ox6a, 0x6b, 0x6c, 0x6d, Ox6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x83, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x953, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, Oxal, Oxa2, Oxa3, Oxa4, 0xa5, 0xa6, Oxa7,
Oxa8, 0xa9, Oxaa, Oxab, Oxac, Oxad, Oxae, Oxaf,
0xb0, 0xbl, 0xb2, 0xb3, 0xb4, 0xb3, 0xb6, 0xb7,
0xb8, 0xb9, Oxba, 0xbb, 0Oxbc, 0xbd, Oxbe, 0xbf,
0xcO0, Oxcl, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, Oxca, Oxcb ,O0xce, Oxcd, Oxce, Oxcf,
0xdo, 0xdl, 0xd2, 0xd3, 0xd4, 0xds, 0xde, 0xd7
0xds, 0xd9, Oxda, 0xdb, Oxdc, 0xdd, Oxde, Oxdf,
0xe0, Oxel, Oxe2, 0xe3, Oxe4, 0xe5, 0xe6, 0xe7,
Oxe8, 0xe9, Oxea, Oxeb, Oxec, Oxed, Oxee, Oxef,
0x10, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0x19, Oxfa, 0xfb, Oxfc, 0xfd, Oxfe, 0xff,
0xff, Oxfe, 0xfd, Oxfc, 0xfb, Oxfa, 0x19, 0xf8,
0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0x10,
Oxef, Oxee, Oxed, Oxec, Oxeb, Oxea, 0xe9, 0xe8,
0xe7, 0xe6, 0xe5, Oxe4, 0xe3, Oxe2, Oxel, 0xe0,
Oxdf, Oxde, 0xdd, Oxdc, 0xdb, Oxda, 0xd9, 0xds,
0xd7, 0xde, 0xds, 0xd4, 0xd3, 0xd2, 0xdl, 0xdo,
Oxcf, Oxce, Oxcd, Oxcc, 0xcb, Oxca, 0xc9, 0xc8,
0xc7, 0xc6, 0xc5, 0xc4, 0xc3, 0xc2, Oxcl, 0xcO0,
0xbf, Oxbe, 0xbd, 0Oxbc, 0xbb, Oxba, 0xb9, 0xb8,
0xb7, 0xb6, 0xb3, 0xb4, 0xb3, 0xb2, 0xbl, 0xb0,
Oxaf, Oxae, Oxad, Oxac, Oxab, Oxaa, 0xa9, 0xa8,
Oxa7, 0xa6, 0xa5, Oxa4, Oxa3, Oxa2, Oxal, 0xa0,
0x9f, 0x9e, 0x9d, 0x9c, 0x9b, 0x9a, 0x99, 0x98,
0x97, 0x96, 0x93, 0x94, 0x93, 0x92, 0x91, 0x90,
0x8f, 0x8e, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88,
0x87, 0x86, 0x83, 0x84, 0x83, 0x82, 0x81, 0x80,
0x7f, 0x7e, 0x7d, 0x7c, 0x7b, 0x7a, 0x79, 0x78,
0x77, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71, 0x70,

68 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

0x6f, Ox6e, 0x6d, 0x6¢, 0x6b, Ox6a, 0x69, 0x68,
0x67, 0x66, 0x65, 0x64, 0x63, 0x62, 0x61, 0x60,
0x5f, 0x5e, 0x5d, 0x5c, 0x5b, 0x5a, 0x59, 0x58,
0x57, 0x56, 0x55, 0x54, 0x53, 0x52, 0x51, 0x50,
0x4f, Ox4e, 0x4d, Ox4c, 0x4b, Ox4a, 0x49, 0x48,
0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0x41, 0x40,
0x3f, 0x3e, 0x3d, 0x3c, 0x3b, 0x3a, 0x39, 0x38,
0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30,
0x2f, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28,
0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20,
Ox1f, Oxle, Ox1d, Oxlc, 0x1b, Ox1a, 0x19, 0x18,
0x17, 0x16, 0x15, 0x14, 0x13, 0x12, Ox11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,
0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00

}s

ERROR LED=1;
OK LED=1;
for (array_point = 0; array_point<512; array _point++)
{
if (Test_array one[array point] != Test array two [array point])

{
ERROR_LED = 0;

OK LED=1;
break;
}
else{
OK _LED =0;
ERROR LED = 1;
§
§
while (1);

STC MCU Limited. website: www.STCMCU.com 69

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

3.2.3 External Expandable 64KB RAM (Off-Chip RAM)

There is 64K-byte addressing space available for STC12C5A60S2 to access external data RAM. Just the same as
the design in the conventional 8051, the port — P2, PO, ALE, P3.6 and P3.7 have alterative function for external
data RAM access. In addition, a new register BUS_SPEED (address: 0xA1) is design to control the acess timimg
of "MOVX" instruction. In BUS_SPEED register, {ALES1 and ALESO} is to stretch the setup time and hold
time with respect to ALE negative edge and {RW2, RW1, RWO0} is to stretch the pulse width of /WR(P3.6) and
/RD(P3.7). By using BUS SPEED to change the instruction cycle time, STC12C5A60S2 can conformed to
communicate with both of fast and slow peripheral devices without loss of communication efficiency.

BUS_SPEED register

Mnemonic | Add Name B7 | B6 B5 B4 (B3| B2 Bl BO | Reset Value
BUS_SPEED | A1H |Bus-Speed Control| - - |ALES1|ALESO| - [RWS2| RWSI1 [RWSO | xx10,x011

ALESI | ALESO
0 0 |The PO address setup time and hold time to ALE negative edge is one clock cycle

0 1 The PO address setup time and hold time to ALE negative edge is two clock cycles.
1 0 |The PO address setup time and hold time to ALE negative edge is three clock cycles. (default)
1 1 The PO address setup time and hold time to ALE negative edge is four clock cycles.

RWS2 [RWS1 | RWS0
0 0 0 [The MOVX read/write pulse is 1 clock cycle.
The MOVX read/write pulse is 2 clock cycles.
The MOVX read/write pulse is 3 clock cycles.
The MOVX read/write pulse is 4 clock cycles. (default)
The MOVX read/write pulse is 5 clock cycles.
The MOVX read/write pulse is 6 clock cycles.
The MOVX read/write pulse is 7 clock cycles
The MOVX read/write pulse is 8 clock cycles

——=|—]o|lol|lo

0
1
1
0
0
1
1

el E=0 il B=1 Bt =1

When the target is on-chip auxiliary RAM, the setting on BUS_SPEED register is discarded by hardware.

. . Execution clocks of| Execution clocks| Promoted
Mnemonic Description Byte conventional 8051 [of STC 1T MCU | Efficiency
MOVX A, @Ri Move External RAM(8-bit addr) to Acc 1 24 3 8x
MOVX @Ri, A Move Acc to External RAM(8-bit addr) 1 24 4 6x
MOVX A, @DPTR |Move External RAM(16-bit addr) to Acc 1 24 3 8x
MOVX @DPTR,A |Move Acc to External RAM (16-bit addr) 1 24 3 8x
MOVX A, @Ri Move External RAM(8-bit addr) to Acc 1 24 7+? *Notel
MOVX @Ri, A Move Acc to External RAM(8-bit addr) 1 24 7+? *Notel
MOVX A, @DPTR |Move External RAM(16-bit addr) to Acc 1 24 7+? *Notel
MOVX @DPTR,A |Move Acc to External RAM (16-bit addr) 1 24 7+? *Notel

Notel: the clocks needed by accessing off-chip expanded RAM are 7+2x ALE Bus_Speed+RW_Bus_ Speed
ALE Bus_Speed is controlled by ALES1/ALESO bits of register BUS_SPEED
RW_Bus_Speed is controlled by RWS2/RWS1/RWSO0 bits of register BUS_SPEED

70 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

Timing diagram for MOVX @DPTR, A without stretch

ONONONONONONONONONONONONONG)

MOVX write cycle

MOVX write cycle

A

A

Clock
| | |
1 ‘Weak pullup 1
T | U
P2 h X High-byte address X FF X High-byte address X
: \{kak pullup :
T ! y
PO H IXw-byle Address X Data for writing X FF le-byte Address X Data for writing X
i ! i
ALE : | | | '
! 1
1 1
1 1
/WR !]
(P3.6) | | | | | !
! 1
1 ol
L) 1
! 1

Timing diagram for MOVX A, @DPTR without stretch

ONONONONONONGNONONONONONONO

MOVX read cycle

MOVX read cycle

A

Y

Clock
1 1 1
1 . 1
P2 ! X High-byte address ! X High-byte address X
1 1 1
PO i me-byte Addres>_(Data X Port Weak-éullup XuOW-byle Addfﬂs}—(Data XPort weak-pullx
1 1 1
ALE ' ‘ ‘
; | |
/RD '
(P3.7) ' |—| |—|
1
0
1

Timing diagram for MOVX @DPTR, A with stretch {RWS2,RWS1,RWS0} =3’bl11

Twr = 8 clock cycles (Twr is stretched by 7 cycles).

O3 ONONONONONONONONONONONONO

Clock
1 1
T 1
P2 ! X High-byte address X
1 1
T 1
PO ! X_ow.byte Addresx Data for writing X
T 1
ALE ' |
1
/WR ! |]
(P3.6) : . i
" i MOVX write cycle ! 0
L) T =
: H Twr = (1+7) cycles E H
1 [l -
STC MCU Limited. website: www.STCMCU.com 71

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

Timing diagram for MOVX @DPTR, A with stretch {RWS2,RWS1,RWS0} =3’b111 and
{ALES1,ALESO} ==2"bl11
The Trd is stretched by 7, so Twr = 8 clock cycles. TALES is stretched by 3, so TALES = 4 clock

cycles and TALEH = 4 clock cycles.

0]0]0]0]6]0]0J0J0]0]0]0J00]0]0J0J0]0]0)0J0]0)

Clock
L [
T
P2 H X High-byte address X
: weak-pullup weak-pullup :
T
PO ! X Low-byte Address Data X FF X
] 1 1
ALE N i
1 1 1
1 1 [] 1
/RD — i — Trd = (1+7) cycles | :
(P3.7) 1 I ALEsetuptime ' ALE hold time 1 I: =| 1
’ : : (1+3) cycles : (1+3) cycles : :
: 1 1 1 :
1 MOVX read cycle 1
o i
72 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

3.3 Special Function Registers

3.3.1 Special Function Registers Address Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
OF8H CH CCAPOH | CCAPIH OFFH
0000,0000 | 0000,0000 0000,0000
OFOH B PCA_PWMO|PCA_PWMI OF7H
0000,0000 xxxX,xx00 | xxxx,xx00
OESH CL CCAPOL | CCAPIL OEFH
0000,0000 | 0000,0000 0000,0000
0EOH ACC OE7H
0000,0000
0D8H| CCON CMOD | CCAPMO | CCAPMI1 O0DFH
00xx,xx00 | 0xxx,0000 | x000,0000 x000,0000
0DOH| PSW 0D7H
0000,0000
0C8H P5 P5M1 P5MO SPSTAT | SPCTL SPDAT |0CFH
xxxx,1111] xxxx,0000 | xxxx,0000 00xx,xxxx|0000,0100| 0000,0000
0COH P4 WDT_CONTR| TAP_DATA (IAP_ADDRH|IAP ADDRL [IAP_CMD | IAP_TRIG | IAP_CONTR [0C7H
1111,1111| 0x00,0000 | 1111,1111 | 0000,0000 | 0000,0000 |xxxx,xx00|xxxx,xxxx| 0000,x000
0BSH 1P SADEN P4SW ADC_CONTR| ADC RES |ADC_RESL OBFH
0000,0000| 0000,0000 x000,xxxx | 0000,0000 [0000,0000{0000,0000
0BOH P3 P3M1 P3MO P4M1 P4MO 1P2 IP2H IPH 0B7H
1111,1111| 0000,0000 | 0000,0000 | 0000,0000 | 0000,0000 |xxxx,xx00|xxx%x,xx00| 0000,0000
0A8H 1IE SADDR 1E2 0AFH
0000,0000 | 0000,0000 xXXX,xx00
0AOH P2 BUS_SPEED| AUXRI TEST WDT |0A7H
ITT1T1111 | xx10,x011 | 0000,0000 don't use
098H| SCON SBUF S2CON S2BUF BRT P1ASF 09FH
0000,0000 | xxxx,xxxx | 0000,0000 | xxxx,xxxx [0000,0000 {0000,0000
090H P1 PIM1 P1IMO POM1 POMO P2M1 P2MO CLK DIV |097H
1111,1111| 0000,0000 | 0000,0000 | 0000,0000 | 0000,0000 {0000,0000|0000,0000| xxxx,x000
088H| TCON TMOD TLO TL1 THO THI1 AUXR |WAKE CLKO|08FH
00000000 | 00000000 | 0000,0000 | 0000,0000 | 0000,0000 {0000,0000{0000,0000| 0000,0x00
080H PO SP DPL DPH PCON 087H
1111,1111| 0000,0111 | 0000,0000 | 0000,0000 0011,0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
T Non Bit Addressable
Bit Addressable
STC MCU Limited. website: www.STCMCU.com 73

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

3.3.2 Special Function Registers Bits Description

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
PO Port 0 80H | Po.7 | Po.s | Pos | Po4 | P03 | Po.2 | Po.1 | PO.0 | 1111 1111B
SP Stack Pointer 81H 0000 0111B
DPTR DPL | Data Pointer Low | 82H 0000 0000B
DPH | Data Pointer High | 83H 0000 0000B
PCON Power Control | 87H [sMoD|smopo | LvDF | POF | GF1 | GFo | PD | DL [0011 0000B
TCON Timer Control 88H TF1 | TRI | TF0 | TRO | IE1 | 1T1 | 1EO | ITO [0000 0000B
TMOD Timer Mode 89H |GATE| ¢/T | M1 | Mo [GATE| ¢/T | M1 | Mo |0000 0000B
TLO Timer Low 0 SAH 0000 0000B
TL1 Timer Low 1 8BH 0000 0000B
THO Timer High 0 8CH 0000 0000B
TH1 Timer High 1 8DH 0000 0000B
AUXR Auxiliary register SEH TOx12 T1x12|UARTiM0x6 BRTR|SZSMOD|BRTx12 EXTRAM|S1BRS 0000 0000B
CLKﬁOutput PCAWAKEUP | RXD_PIN_IE | TI_PIN_IE | TO_PIN_IE | LVD_WAKE |BRT(‘LK() |Tl(‘LK() | TOCLKO
WAKE_CLKo| _ Power down SFH 0000 0000B
Wake-up control
register
P1 Port 1 90H | P17 | Pi6 | PLs | P4 | P13 | P12 | PLI | PLO | 1111 1111B
PIM1 P1 configuration 1| 91H 0000 0000B
P1IMO P1 configuration 0| 92H 0000 0000B
POM1 PO configuration 1| 93H 0000 0000B
POMO PO configuration 0| 94H 0000 0000B
P2M1 P2 configuration 1| 95H 0000 0000B
P2MO P2 configuration 0| 96H 0000 0000B
CLK DIV | Clock Divder 97h | - | | - | - |ciks2|cLkst| cLkso |xxxx x000B
SCON Serial Control 98H [SMO/FE| sM1 | sm2 | REN | TBS | RB8 | TI | RI [0000 0000B
SBUF Serial Buffer 99H XXXX XXXXB
S2CON S2 Control 9AH |S2SM0|S2SM1|S2SM2| S2REN|S2TB8|S2RBS8| S2T1 | S2RI | 0000 0000B
S2SBUF S2 Serial Buffer 9BH XXXX XXXxXB
grr | dedicated Baud- 1oy 0000 0000B
Rate Timer
PIASF P1 Analog.Special ODH P17ASF|P16ASF|PISASF|P14ASF|PI3ASF|P]2ASF|PllASFl P10ASF 0000 0000B
Function
P2 Port 2 AOH | P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20 | 1111 1111B
BUS_SPEED |Bus-Speed Control| Al1H - - |ALESI|ALESO| - |RWS2|RWSI|RWSO [xx10x011B
AUXR1 |Auxiliary register]| A2H | - |PCA_P4|sPi_P4|s2_P4| GF2 | ADRJ | pPs | 0000 0000B
IE Interrupt Enable | A8H | EA |ELVD|EADC| ES | ETI | EX1 | ETO | EX0 [0x00 0000B
SADDR Slave Address A9H 0000 0000B
IE2 Interrupt Enable 2| AFH -l -1 -1 -1 -1 - |®eser| BEs2 |xxxxxx00B

74

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
P3 Port 3 BOH | P37 | P36 | P35 | P3.4 | P33 | P32 | P3.1 | P3.0 | 1111 1111B
P3M1 P2 configuration 1 | B1H 0000 0000B
P3MO P3 configuration 0 | B2H 0000 0000B
P4AM1 P4 configuration 1 | B3H 0000 0000B
P4AMO P4 configuration 0 | B4H 0000 0000B
P2 2rd Interrupt Priority| sH - -7 -1 -1 -1 [Psp1 | Ps2 ok xx00B
Low register
PO 2rd Interrupt Priority| 61 - - T -1 -1 -7 [pspiH] Ps2H <xxx Xx00B
Low register
IPH Imemﬁitginomy B7H [pcan|pLYDH[PADCH| PSH [PT1H | PX1H | PTOH | PXOH 0000 0000B
» Interl'u{)(t)\}:]rlorlty Bsg |PPea | puvp [papc | ps | p1i [px1 | P10 | PX0 | 5000 0000B
SADEN [Slave Address Mask| B9H 0000 0000B
P4SW Port 4 switch BBH | - |LVD_P4.6|ALE_P4.5|NA_P4.4| - - - - | x000 xxxxB
ADC_CONTR ADC COntrOl BCH ADC_POWER | SPEEDI | SPEEDO [ADC_FLAG| ADC_START | CHS2 | CHS1 | CHISO 0000 OOOOB ‘
ADC RES ADC Result BDH 0000 0000B
ADC RESL| ADC Result Low BEH 0000 0000B
P4 Port 4 COH | P47 | P46 | P45 | P44 | P43 | P42 | P41 | P40 | 1111 1111B
WDT CONTR Watch-Dog-Timer ClH WDTiFLAGl - EN7WDT| CLR7WDT|IDLE7WDT PS2 | PSI | PSO | +x00 0000B
Control Register
IAP DATA | [SPIAP Flash Data |)y 1111 1111B
- Register
ISP/IAP Flash
IAP_ADDRH Address High C3H 0000 0000B
ISP/IAP Flash
IAP_ADDRL Address Low C4H 0000 0000B
ap cmp | ISPAAPFlash g f T - L - L - f - [- Twsifmso) o00m
- Command Register
IAP TRIG | [SPAAPFlash XXXX XXXXB
- Command Trigger
IAP_ CONTR ISP/IAP.Control CTH IAPEN| SWBS |[SWRST|CMD_FAIL| - | WT2 | WT1 | WTO 0000 x000B
Register
P5 Port 5 C8H o | P53 | ps2 | P51 | P50 |xxxx 1111B
P5M1 PS5 Configuration 1 | C9H 0000 0000B
P5MO PS5 Configuration 0 | CAH 0000 0000B
SPSTAT | SPI Status register | CDH | SPIF |WCOL| - - - - - 00xx xxxxB
SPCTL | SPI control register | CEH | SSIG | SPEN [DORD [MSTR | CPOL | CPHA | SPR1 | SPRO [0000 0100B
SPDAT SPI Data register CFH - - - - 0000 0000B
STC MCU Limited. website: www.STCMCU.com 75

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
PSW Program Status o | €Y | ac | Fo | Rs1 | Rso | ov | F1 | P 0000 0000B
Word
CCON PCA Cpntrol psH |-CF [R] - T - 1T -1 - Jccri] ccro 00xx xx00B
Register
CMOD [PCA Mode Register| DOH [cmpL| - [- [- [cps2]cpsi|cpso] ECF | 00xx 0000B
CCAPMO PCA Modgle 0 DAH = [Ecomo[caPpPo]caPNO| MATO | TOGO | PWMO | ECCFO <000 0000B
Mode Register
CCAPMI PCA MOdU.,le 1 DBH |— [EcoM1[CAPPI[CAPNI| MATI | TOG1 | PWMI1 [ECCF1 <000 0000B
Mode Register
ACC Accumulator EOH 0000 0000B
CL PCA Base Timer |- gy 0000 0000B
Low
ccapor, | PCAmoduled)y, 0000 0000B
capture register low
ccapiy | PeAmodulel) ppp, 0000 0000B
capture register low
B B Register FOH 0000 0000B
pcA pwmo| PCAPWMmode | f - 1 -] - | -] - [- [eecon [ercor }o0io0B
- auxiliary register 1
pca pwmi| PCAPWMmode | - [-] - [- [- [- [eecm [eee | a0n
- auxiliary register 1
CH PCABase Timer | gy 0000 0000B
High
ccapon | PCAmodule0 g,y 0000 0000B
capture register high
ccapiy | FPCAmodulel | ipny 0000 0000B
capture register high

Some common SFRs of standard 8051 are shown as below.

Accumulator
ACC is the Accumulator register. The mnemonics for accumulator-specific instructions, however, refer to the
accumulator simply as A.

B-Register
The B register is used during multiply and divide operations. For other instructions it can be treated as another
scratch pad register.

Stack Pointer

The Stack Pointer register is 8 bits wide. It is incrementde before data is stored during PUSH and CALL
executions. While the stack may reside anywhee in on-chip RAM, the Stack Pointer is initialized to 07H after a
reset. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first
register (RO) of register bank 1. Thus, if more than one register bank is to be used, the SP should be
initialized to a location in the data memory not being used for data storage. The stack depth can extend
up to 256 bytes.

76 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Program Status Word(PSW)

The program status word(PSW) contains several status bits that reflect the current state of the CPU. The PSW,
shown below, resides in the SFR space. It contains the Carry bit, the Auxiliary Carry(for BCD operation), the two
register bank select bits, the Overflow flag, a Parity bit and two user-definable status flags.

The Carry bit, other than serving the function of a Carry bit in arithmetic operations, also serves as the
“Accumulator” for a number of Boolean operations.

The bits RSO and RS1 are used to select one of the four register banks shown in the previous page. A number of
instructions refer to these RAM locations as RO through R7.

The Parity bit reflects the number of 1s in the Accumulator. P=1 if the Accumulator contains an odd number of 1s
and otherwise P=0.

PSW register
SFR name | Address [bit B7 B6 B5 B4 B3 B2 Bl BO
PSW DOH | name | CY AC FO RS1 RSO oV Fl1 P
CY: Carry flag.

This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow
(subtrac-tion). It is cleared to logic 0 by all other arithmetic operations.
AC: Auxilliary Carry Flag.(For BCD operations)
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow
from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic operations
FO : Flag 0.(Available to the user for general purposes)
RS1: Register bank select control bit 1.
RSO0: Register bank select control bit 0.
[RS1 RSO] select which register bank is used during register accesses
RS1 RSO Working Register Bank(R0~R7) and Address
Bank 0(00H~07H)
Bank 1(08H~0FH)
Bank 2(10H~17H)
Bank 3(18H~1FH)

—_—l— OO

— o= |o

OV : Overflow flag.
This bit is set to 1 under the following circumstances:
* An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
* A MUL instruction results in an overflow (result is greater than 255).
* A DIV instruction causes a divide-by-zero condition.
The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other
cases.

F1 : Flag 1. User-defined flag.

P : Parity flag.
This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared if the
sum is even.

STC MCU Limited. website: www.STCMCU.com 77

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

3.3.3 Dual Data Pointer Register (DPTR)

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a
16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit registers.

For fast data movement, STC12C5A60S2 supports two data pointers. They share the same SFR address and are
switched by the register bit — DPS/AUXR.0.

AUXRI register

Mnemonic| Add Name 7 6 5 4 3 2 1 0 | Reset Value
AUXRI1 | A2H [Auxiliary Register 1 | - | PCA P4 |SPI P4|S2 P4 |GF2|ADRJ| - |DPS| x000,00x0
PCA P4

0 : Default. The PCA function is on P1[4:2]

1 : The PCA function on P1[4:2] is switched to P4[3:1].
ECI is switched from P1.2 to P4.1
PCAO0/PWMO is switched from P1.3 to P4.2
PCA1/PWMI is switched from P1.4 to P4.3

SPI P4
0 : Default. The SPI function is on P1[7:4]
1 : The SPI function on P1[7:4] is switched to P4[3:0].
SCLK is switched from P1.7 to P4.3
MOSI is switched from P1.6 to P4.2
MISO is switched from P1.5 to P4.1
SS is switched from P1.4 to P4.0

S2 P4
0 : Default. the UART2(S2) function is on P1[3:2]
1 : The UART2(S2) function on P1[3:2] is switched to P4[3:2].
TxD2 is switched from P1.3 to P4.3
RxD2 is switched from P1.2 to P4.2

GF2 : General Flag. It can be used by software.
ADRJ

. The 10-bit conversion result of ADC is arranged as {ADC_RES[7:0], ADC RESL[1:0]}.
1 : The 10-bit conversion result is right-justified, {ADC RES[1:0], ADC_RESL][7:0]}.

0 : Default. DPTRO is selected as Data pointer.
1 : The secondary DPTR is switched to use.

78 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

The following program is an assembly program that demostrates how the dual data pointer be used.

*/

i

;/* -—- STC MCU International Limited
;/* -——- STC 1T Series MCU Dual Data Pointer Demo
;/* --- Mobile: (86)13922809991
;/* --- Fax: 86-755-82905966
/¥ --- Tel: 86-755-82948412
/¥ --- Web: www.STCMCU.com

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC ~ */

e */
AUXRI1 DATA 0A2H ;Define special function register AUXR1
MOV AUXRI, #0 ;DPS=0, select DPTRO
MOV DPTR, #1FFH ;Set DPTRO for 1FFH
MOV A, #55H
MOVX @DPTR, A ;load the value 55H in the 1FFH unit
MOV DPTR, #2FFH ;Set DPTRO for 2FFH
MOV A, #0AAH
MOVX @DPTR, A ;load the value 0AAH in the 2FFH unit
INC AUXRI1 ;DPS=1, DPTRI1 is selected
MOV DPTR, #1FFH ;Set DPTR1 for 1FFH
MOVX A, @DPTR ;Get the content of 1FFH unit
;which is pointed by DPTRI,
;the content of Accumulator has changed for 55H
INC AUXRI1 ;DPS=0, DPTRO is selected
MOVX A, @DPTR ;Get the content of 2FFH unit
;which is pointed by DPTRO,
;the content of Accumulator has changed for 0AAH
INC AUXRI1 ;DPS=1, DPTR1 is selected
MOVX A, @DPTR ;Get the content of 1FFH unit
;which is pointed by DPTRI,
;the content of Accumulator has changed for 55H
INC AUXRI1 ;DPS=0, DPTRO is selected
MOVX A, @DPTR ;Get the content of 2FFH unit
;which is pointed by DPTRO,
;the content of Accumulator has changed for 0AAH
STC MCU Limited. website: www.STCMCU.com 79

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Chapter 4. Configurable I/O Ports of STC12C5A60S2 series

4.1 1/0 Ports Configurations

All I/O ports (including P4 and P5) of STC12C5A60S2 may be independently configured to one of four modes
by setting the corresponding bit in two mode registers PxMn (x= 0 ~ 5, n = 0, 1).The four modes are quasi-
bidirectional (standard 8051 port output), push-pull output, input-only or open-drain output. All port pins default
to quasi-bidirectional after reset. Each one has a Schmitt-triggered input for improved input noise rejection. Any
port can drive 20mA current, but the whole chip had better drive lower than 120mA current.

P4.4, P4.5, P4.6 and P4.7 are located at the pins - PSEN, ALE, EA and RST of conventional 80C51. Pay attention
that additional control bits on PASW register are used to enable the I/O port functions of these pins. Prior to use
them as I/O port, the users must set the corresponding bit to enable it.

Configure 1/O ports mode
P5 Configure <P5.3, P5.2, P5.1, P5.0 port> (P5 address: C8H)
P5M1[3 : 0] | PSMO [3 : 0] /O ports Mode
quasi_bidirectional(standard 8051 I/O port output)
0 0 Sink Current up to 20mA , pull-up Current is 230pA ,

Because of manufactured error, the actual pull-up current is 250uA ~ 150uA
push-pull output(strong pull-up output, current can be up to 20maA, resistors

0 ! need to be added to restrict current
1 0 input-only (high-impedance)
| | Open Drain, internal pull-up resistors should be disabled and external

pull-up resistors need to join.

Example: MOV P5MI, #xxxx1010B
MOV P5MO, #xxxx1100B
;P5.3 in Open Drain mode, P5.2 in strong push-pull output, P5.1 in high-impedance input, P5.0 in

quasi_bidirectional/weak pull-up

P4 Configure <P4.7, P4.6, P4.5, P4.4, P4.3, P4.2, P4.1, P4.0 port> (P4 address: COH)

PAM1[7 : 0] | PAMO [7 : 0] 1/0 ports Mode
quasi_bidirectional(standard 8051 I/O port output) ,
0 0 Sink Current up to 20mA , pull-up Current is 230pA ,

Because of manufactured error, the actual pull-up current is 250uA ~ 150uA
push-pull output(strong pull-up output, current can be up to 20mA, resistors
need to be added to restrict current
1 0 input-only (high-impedance)
Open Drain, internal pull-up resistors should be disabled and external
pull-up resistors need to join.
Example: MOV P4M1, #10100000B
MOV P4MO, #11000000B

;P4.7 in Open Drain mode, P4.6 in strong push-pull output, P4.5 in high-impedance input, P4.4/P4.3/P4.2/

P4.1/P4.0 in quasi_bidirectional/weak pull-up

0 1

1 1

80 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

P3 Configure <P3.7, P3.6, P3.5, P3.4, P3.3, P3.2, P3.1, P3.0 port> (P3 address: BOH)
P3M1[7 : 0] [P3MO [7 : 0] 1/O ports Mode

quasi_bidirectional(standard 8051 I/O port output)

0 0 Sink Current up to 20mA , pull-up Current is 230pA ,
Because of manufactured error, the actual pull-up current is 250uA ~ 150uA

0 | push-pull output(strong pull-up output, current can be up to 20mA, resistors
need to be added to restrict current

1 0 input-only (high-impedance)

1

1

Open Drain, internal pull-up resistors should be disabled and external

pull-up resistors need to join.

Example: MOV P3M1, #10100000B
MOV P3MO, #11000000B
;P3.7 in Open Drain mode, P3.6 in strong push-pull output, P3.5 in high-impedance input, P3.4/P3.3/P3.2/
P3.1/P3.0 in quasi_bidirectional/weak pull-up

P2 Configure <P2.7, P2.6, P2.5, P2.4, P2.3, P2.2, P2.1, P2.0 port> (P2 address: AOH)

P2M1[7 : 0] | P2MO [7 : 0] 1/O ports Mode
quasi_bidirectional(standard 8051 I/O port output) ,
0 0 Sink Current up to 20mA , pull-up Current is 230pA ,
Because of manufactured error, the actual pull-up current is 250uA ~ 150uA
0 | push-pull output(strong pull-up output, current can be up to 20mA, resistors
need to be added to restrict current
1 0 input-only (high-impedance)

1

1

Open Drain, internal pull-up resistors should be disabled and external
pull-up resistors need to join.

Example: MOV P2M1, #10100000B
MOV P2MO, #11000000B
;P2.7 in Open Drain mode, P2.6 in strong push-pull output, P2.5 in high-impedance input, P2.4/P2.3/P2.2/
P2.1/P2.0 in quasi_bidirectional/weak pull-up

P1 Configure <P1.7, P1.6, P1.5, P1.4, P1.3, P1.2, P1.1, P1.0 port> (P1 address: 90H)

PIMI1[7 : 0] | PIMO[7 : 0] 1/0 ports Mode
quasi_bidirectional(standard 8051 I/O port output)
0 0 Sink Current up to 20mA , pull-up Current is 230pA ,
Because of manufactured error, the actual pull-up current is 250uA ~ 150uA
0 | push-pull output(strong pull-up output, current can be up to 20mA, resistors
need to be added to restrict current
1 0 input-only (high-impedance)

1

1

Open Drain, internal pull-up resistors should be disabled and external
pull-up resistors need to join.

Example: MOV P1MI, #10100000B
MOV PIMO, #11000000B
;P1.7 in Open Drain mode, P1.6 in strong push-pull output, P1.5 in high-impedance input, P1.4/P1.3/P1.2/
P1.1/P1.0 in quasi_bidirectional/weak pull-up

STC MCU Limited.

www.STCMCU.com 81

website:

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

PO Configure <P0.7, P0.6, P0.5, P0.4, P0.3, P0.2, P0.1, P0.0 port> (PO address: 80H)

POMI[7 : 0] | POMO [7 : 0] 1/O ports Mode
quasi_bidirectional (standard 8051 1/O port output)
0 0 Sink Current up to 20mA , pull-up Current is 230pA ,

Because of manufactured error, the actual pull-up current is 250uA ~ 150uA

push-pull output(strong pull-up output, current can be up to 20mA, resistors
need to be added to restrict current
1 0 input-only (high-impedance)
Open Drain, internal pull-up resistors should be disabled and external
pull-up resistors need to join.
Example: MOV POMI, #10100000B
MOV POMO, #11000000B

;P0.7 in Open Drain mode, P0.6 in strong push-pull output, P0.5 in high-impedance input, P0.4/P0.3/P0.2/

P0.1/P0.0 in quasi_bidirectional/weak pull-up

0 1

1 1

Some SFRs related with I/O ports are listed below.

P5 register (bit addressable)
SFR name| Address | bit B7 B6 BS B4 B3 B2 B1 BO
P5 C8H name - - - - P5.3 P5.2 P5.1 P5.0

P5M1 register (non bit addressable)

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
P5M1 C9H name - - - - P5M1.3 | P5SM1.2 | PSMI.1 | P3M1.0
P5MO register (non bit addressable)
SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
P5MO CAH | name - - - - P5M0.3 | P5MO0.2 | P5MO.1 | P5M0.0

2 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

P4 register (bit addressable)
SFR name| Address | bit B7 B6 BS B4 B3 B2 B1 BO
P4 COH | name | P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0

P4 register could be bit-addressable and set/cleared by CPU. And P4.7~P1.0 coulde be set/cleared by CPU. P4.5
is an alternated function on ALE pin.

P4M1 register (non bit addressable)
SFR name | Address | bit B7 B6 BS B4 B3 B2 Bl BO
P4AMI1 B3H | name | PAMI1.7 | PAM1.6 | PAML1.5 | PAM1.4 | PAM1.3 | PAM1.2 | PAMI.1 | PAMI1.0

P4MO register (non bit addressable)
SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
P4AMO B4H | name | PAMO.7 | PAMO.6 | PAMO.5 | PAMO0.4 | P4MO0.3 | PAMO.2 | PAMO.1 | P4MO0.0

P3 register (bit addressable)

SFR name| Address | bit B7 B6 B5 B4 B3 B2 Bl BO
P3 BOH | name | P3.7 P3.6 P3.5 P34 P33 P3.2 P3.1 P3.0

P3 register could be bit-addressable and set/cleared by CPU. And P3.7~P3.0 coulde be set/cleared by CPU.

P3MI register (non bit addressable)
SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
P3M1 B1H name | P3M1.7 | P3M1.6 | P3AM1.5 | P3M1.4 | P3M1.3 | P3M1.2 | P3MI1.1 | P3M1.0

P3MO register (non bit addressable)
SFR name | Address | bit B7 B6 BS B4 B3 B2 B1 BO
P3MO B2H | name | P3MO0.7 | P3MO0.6 | P3MO0.5 | P3MO0.4 | P3M0.3 | P3MO0.2 | P3MO.1 | P3MO0.0

P2 register (bit addressable)

SFR name | Address | bit B7 B6 BS B4 B3 B2 Bl BO
P2 AOH | name | P2.7 P2.6 P2.5 P2.4 P23 P2.2 P2.1 P2.0

P2 register could be bit-addressable and set/cleared by CPU. And P2.7~P2.0 coulde be set/cleared by CPU.

P2M1 register (non bit addressable)
SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
P2M1 95SH |name|P2M1.7 | P2M1.6 | P2M1.5 | P2M1.4 | P2M1.3 | P2M1.2 | P2M1.1 | P2M1.0

P2MO register (non bit addressable)
SFR name | Address | bit B7 B6 BS B4 B3 B2 Bl BO
P2MO 96H | name | P2M0.7 | P2MO0.6 | P2MO0.5 | P2M0.4 | P2MO0.3 | P2M0.2 | P2MO0.1 | P2MO0.0

STC MCU Limited. website: www.STCMCU.com {3

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

P1 register (bit addressable)

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
Pl 90H name | P1.7 | P1.6 | P1.5 | P14 | P13 | P12 | PI1.1 | P1.0

P1 register could be bit-addressable and set/cleared by CPU. And P1.7~P1.0 coulde be set/cleared by CPU.

P1MI register (non bit addressable)
SFR name Address bit B7 B6 BS B4 B3 B2 Bl BO

PIM1 91H | name | PIM1.7 | PIM1.6 | PIM1.5 | PIM1.4 | PIM1.3 | PIM1.2 | PIM1.1 | PIM1.0

P1MO register (non bit addressable)
SFR name Address bit B7 B6 BS B4 B3 B2 Bl BO

PIMO 92H | name | PIMO0.7 | PIMO.6 | PIMO.5 | PIM0.4 | PIMO0.3 | PIMO0.2 | PIMO.1 | PIMO0.0

PO register (bit addressable)

SFR name | Address bit B7 B6 B5 B4 | B3 B2 Bl BO
PO 80H name | P0.7 | P0.6 | PO.5 | P0.4 | P0.3 | P0.2 | PO.1 P0.0

PO register could be bit-addressable. And P0.7~P0.0 coulde be set/cleared by CPU.

POMI1 register (non bit addressable)
SFR name | Address | bit B7 B6 BS B4 B3 B2 B1 BO
POM1 93H name | POM1.7 | POM1.6 | POM1.5 | POM1.4 | POM1.3 | POM1.2 | POM1.1 | POM1.0

POMO register (non bit addressable)
SFR name | Address | bit | B7 | B6 | B5S | B4 | B3 | B2 | Bl | BO

POMO 94H name |POMO0.7 | POMO.6 | POMO.5 | POMO0.4 | POMO0.3 | POMO0.2 | POMO.1 | POMO0.0

84 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
4.2 P4/P5 of STC12C5A60S82 series

The processes accessing P4 and P5 are same with common P1, P2 and P3 which all are bit addressable. The
address of P4 is COH and P5 is C8H.

The address of P4 port is COh. Every bit in P4 all can be bit-addressable, bit address of P4 are shown below:

bit P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0
bit address C7h C6h C5h C4h C3h C2h Clh COh
The address of PS5 port is C8h. Every bit in P5 all can be bit-addressable, bit address of P5 are shown below:

bit - - - - P5.3 P5.2 P5.1 P5.0
bit address CBh CAh COh C8h

P4.4, P4.5, P4.6 and P4.7 are located at the pins - PSEN, ALE, EA and RST of conventional 80C51. Pay attention
that additional control bits on PASW register are used to enable the I/O port functions of these pins. Prior to use
them as /O port, the users must set the corresponding bit to enable it.

Register PASW is used to set the secondary function of NA/P4.4, ALE/P4.5 and EX LVD/P4.6

Mnemonic| Add Name 7 6 5 4 3 2 1 0 | Reset Value
P4SW |BBH| Port-4 switch LVD P4.6|ALE P4.5| NA P4.4 x000,xxxX

NA/P4.4: 0, PASW.4=0 when MCU is reset. NA/P4.4 is weak pull-up and no any function.
1, when PASW.4 is set to 1, NA/P4.4 is as an /O port (P4.4)
ALE/P4.5: 0, PASW.5=0 when MCU is reset. ALE/P4.5 is as ALE signal which is used to access external data
memory .
1, when PASW.5 is set to 1, ALE/P4.4 is used as an /O port (P4.5)
LVD/P4.6: 0, PASW.6=0 when MCU is reset. EX LVD/P4.6 is as External Low-Voltage Detection function
1, when PASW.6 is set to 1, EX LVD/P4.6 is used as an 1/O port (P4.6)

In STC-ISP writter/programmer, users can select what RST/P4.7 is used as. the pin RST/P4.7 is as reset function
acquiescently, see the following figure.

Stept: Active following options after Next—Fowerlp/Cold Reset
MCU Clock: § OnChip E/C clock f* External Crystal/Clock

[FESET/F4.T iz used as{" P4.T,must use external clnc@
After FPower-Up Reszet, add extra Reset-DelayTime (» YES HO
Oscillator Gainl <1ZMHz can select Low): f* High Low

Hext Frogram Code, F1.OfF1.1: % Hot Related § Need = 0/0

Hext Program Code, eraze EEPROM data to FF: YES {* HO

STC MCU Limited. website: www.STCMCU.com 85

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Register AUXR1 is used to select whether PCA/PWM/SPI/UART?2 function is on P1 port or P4 port

Mnemonic [Add Name 7 6 5 4 3 2 1 0 | Reset Value
AUXRI1 |A2H |Auxiliary register 1| - [PCA P4|SPI P4|S2 P4| GF2 | ADRJ| - | DPS | x000,00x0
PCA P4

0 : Default. The PCA function is on P1[4:2]

1

SPI P
0 :

: The PCA function on P1[4:2] is switched to P4[3:1].

ECI is switched from P1.2 to P4.1
PCAO0/PWMO is switched from P1.3 to P4.2
PCA1/PWML is switched from P1.4 to P4.3

Default. The SPI function is on P1[7:4]

. The SPI function on P1[7:4] is switched to P4[3:0].

SCLK is switched from P1.7 to P4.3
MOSI is switched from P1.6 to P4.2
MISO is switched from P1.5 to P4.1
SS is switched from P1.4 to P4.0

: Default. the UART2(S2) function is on P1[3:2]
. The UART2(S2) function on P1[3:2] is switched to P4[3:2].

TxD2 is switched from P1.3 to P4.3
RxD?2 is switched from P1.2 to P4.2

: General Flag. It can be used by software.

: The 10-bit conversion result of ADC is arranged as {ADC RES[7:0], ADC_RESL[1:0]}.
: The 10-bit conversion result is right-justified, {ADC _RES[1:0], ADC RESL[7:0]}.

: Default. DPTRO is selected as Data pointer.
. The secondary DPTR is switched to use.

86

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

4.3 1/0 ports Modes
4.3.1 Quasi-bidirectional I/0

Port pins in quasi-bidirectional output mode function similar to the standard 8051 port pins. A quasi-bidirectional
port can be used as an input and output without the need to reconfigure the port. This is possible because when
the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin
outputs low, it is driven strongly and able to sink a large current. There are three pull-up transistors in the quasi-
bidirectional output that serve different purposes.

One of these pull-ups, called the “very weak” pull-up, is turned on whenever the port register for the pin contains
a logic “1”. This very weak pull-up sources a very small current that will pull the pin high if it is left floating.

A second pull-up, called the “weak” pull-up, is turned on when the port register for the pin contains a logic
“1” and the pin itself is also at a logic “1” level. This pull-up provides the primary source current for a quasi-
bidirectional pin that is outputting a 1. If this pin is pulled low by the external device, this weak pull-up turns off,
and only the very weak pull-up remains on. In order to pull the pin low under these conditions, the external device
has to sink enough current to over-power the weak pull-up and pull the port pin below its input threshold voltage.

The third pull-up is referred to as the “strong” pull-up. This pull-up is used to speed up low-to-high transitions on
a quasi-bidirectional port pin when the port register changes from a logic “0” to a logic “1”. When this occurs, the
strong pull-up turns on for two CPU clocks, quickly pulling the port pin high.

Vee Vee Vce

2 clock

delay |£|- Weak
Stro Very|weak
o PORT
PORT . oI PIN
LATCH DATA ~ ';

INPUT
DATA

Quasi-bidirectional output

STC MCU Limited. website: www.STCMCU.com 87

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
4.3.2 Push-pull Output

The push-pull output configuration has the same pull-down structure as both the open-drain and the quasi-
bidirectional output modes, but provides a continuous strong pull-up when the port register conatins a logic “1”.
The push-pull mode may be used when more source current is needed from a port output. In addition, input path
of the port pin in this configuration is also the same as quasi-bidirectional mode.

Vce

—d

PORT
LATCH DATA PORT

PIN
Ii
INPUT ¢
DATA

Push-pull output
4.3.3 Input-only (High-Impedance)Mode

The input-only configuration is a Schmitt-triggered input without any pull-up resistors on the pin.

INPUT ¢ PORT
DATA PIN

Input-only Mode

4.3.4 Open-drain Output

The open-drain output configuration turns off all pull-ups and only drives the pull-down transistor
of the port pin when the port register contains a logic “0”. To use this configuration in application, a
port pin must have an external pull-up, typically tied to VCC. The input path of the port pin in this
configuration is the same as quasi-bidirection mode.

PORT
PORT {>c | PN

LATCH DATA
INPUT ¢
DATA

Open-drain output

y

88 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

4.4 1/0 port application notes

Traditional 8051 access I/O (signal transition or read status) timing is 12 clocks, STC12C5A60S2
series MCU is 4 clocks. When you need to read an external signal, if internal output a rising
edge signal, for the traditional 8051, this process is 12 clocks, you can read at once, but for
STC12C5A608S2 series MCU, this process is 4 clocks, when internal instructions is complete but
external signal is not ready, so you must delay 1~2 nop operation.

When MCU is connected to a SPI or I12C or other open-drain peripherals circuit, you need add a
10K pull-up resistor.

Some 10 port connected to a PNP transistor, but no pul-up resistor. The correct access method
is 10 port pull-up resistor and transistor base resistor should be consistent, or IO port is set to a

strongly push-pull output mode.

Using IO port drive LED directly or matrix key scan, needs add a 470ohm to 1Kohm resistor to
limit current.

4.5 Typical transistor control circuit
Vee

RI
10K(3.3K~10K)

15K(3. 3K~15K)

common I/O port e

If I/O is configed as “weak” pull-up, you should add a external pull-up resistor R1(3.3K~10K ohm). If no pull-up
resistor R1, proposal to add a 15K ohm series resistor R2 at least or config I/O as “push-pull” mode.

4.6 Typical diode control circuit
1K

10 [tz AN ——> Ve

For weak pull-up / quasi-bidirectional I/O, use sink current drive LED, current limiting resistor as greater than 1K
ohm, minimum not less than 470 ohm.

1K

10 S—AM m

For push-pull / strong pull-up /O, use drive current drive LED.

STC MCU Limited. website: www.STCMCU.com 89

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

4.7 3V/5V hybrid system

When STC12C5A60S2 series 5V MCU connect to 3.3V peripherals. To prevent the 3.3V device can not afford to
5V voltage, the 5V MCU corresponding 1/O should first add a 330 ohm current limiting resistor to 3.3 device I/O
ports. And in intialization of procedures the 5V MCU corresponding 1/O is set to open drain mode, disconnect the
internal pull-up resistor, the corresponding 3.3V device I/O port add 10K ohm external pull-up resistor to the 3.3V
device VCC, so high level to 3.3V and low to 0V, which can proper functioning

3.3V

10K

330Q
5V MCU I/O port { } ® 3.3V device I/O port

When STC12LESA60S2 series 3V MCU connect to 5V peripherals. To prevent the 3V MCU can not afford to 5V
voltage, if the corresponding I/O port as input port, the port may be in an isolation diode in series, isolated high-
voltage part. When the external signal is higher than MCU operating voltage, the diode cut-off, I/O have been
pulled high by the internal pull-up resistor; when the external signal is low, the diode conduction, I/O port voltage
is limited to 0.7V, it’s low signal to MCU.

MCU common I/O H external input signal

When STC12LESA60S2 series 3V MCU connect to 5V peripherals. To prevent the 3V MCU can not afford to
5V voltage, if the corresponding 1/O port as output port, the port may be connect a NPN transistor to isolate high-
voltage part. The circuit is shown as below.

5V

10K
common /O port

5V device 1/0 port
2K

90 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

4.8 How to make I/O port low after MCU reset

Traditional 8051 MCU power-on reset, the general 10 port are weak pull-high output, while many practical
applications require IO port remain low level after power-on reset, otherwise the system malfunction would be
generated. For STC12C5A60S2 series MCU, 10 port can add a pull-down resistor (1K/2K/3K), so that when
power-on reset, although a weak internal pull-up to make MCU output high, but because of the limited capacity
of the internal pull-up, it can not pull-high the pad, so this IO port is low level after power-on reset. If the I/O port
need to drive high, you can set the IO model as the push-pull output mode, while the push-pull mode the drive
current can be up to 20mA, so it can drive this I/O high.

More then 470ohm
/O

1K/2K/3K

4.9 1/0 status while PWM outputing

When I/O is used as PWM port, it’s status as bellow:

Before PWM output While PWM outputing

Quasi-bidirectional Push-Pull (Strong pull-high need 1K~10K limiting resistor)
Push-Pull Push-Pull (Strong pull-high need 1K~10K limiting resistor)
Input ony (Floating) PWM Invalid

Open-drain Open-drain

current limiting resistor between 10K and 1K
common 1/O port &—:—0
To load

STC MCU Limited. website: www.STCMCU.com 91

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

4.10 1/0 drive LED application circuit

_/

CLKOUT2/ADCO/P1.0 Vee | 40
ADCI/P1.1 P0.0/ADO | 39
RxD2/ECI/ADC2/P1.2 P0O.1/AD1 | 38
TxD2/CCP0/ADC3/P1.3 P0.2/AD2 | 37
SS/CCP1/ADC4/P1.4 P0.3/AD3 | 36
MOSI/ADC5/P1.5 P0.4/AD4

MISO/ADC6/P1.6 P0.5/ADS5 | 34
SCLK/ADC7/P1.7 P0.6/AD6

RST/P4.7 P0.7/AD7 | 32

INT/RXD/P3.0 RST2/P4.6/EX_LVD

elzlelelelelalallalalalalaln

w) « [w

/0

/o
1/0

/0
/0
/0
/0
1/0

RI|[[R2| [R3] [R4] |R5| |R6[[R7| [RE] 4700hm*8

€

f] gl dp

H.0.d

[1]

L]
coMm1|comz2| com3{ CoM4
RI R2[] Rr3
ani| | an|| #n
/0

1/0

1/0

R4
471

1/0

/0O dynamic scan driver 4 groups of
digital tube Cathode circuit

VCC

ED2 4K7
ED3 4K
ED4,

COM1|COM2(COM3| COMA4|

0.0.0.0

.
b dp|

.
dl e g|

TxD/P3.1 ALE/P4.5
INTO/P3.2 NA/P4.4 [29
INTI/P3.3 P2.7/AD15 [28
CLKOUTO/INT/TO/P3.4 P2.6/AD14 | 27
CLKOUTI/INT/T1/P3.5 P2.5/ADI13 [26
16 |WR/P3.6 P2.4/AD12 [25
17 |RD/P3.7 P2.3/AD11 | 24
18 | XTAL2 P2.2/AD10 [23
[o]xraLt P2.1/AD9
[20]Gnd P2.0/AD8 [2
N
P22 1 32[Jvce
P23[]2 31[dp2.1
RST[]3 30[—1P2.0
RxD/P3.0 4 29[P1.7/ADC7
TxD/P3.1 []5 28[1P1.6/ADC6
P0.0 6 8 27[1P1.5/ADC5
XTAL2 []7 g 26[_1P0.3
XTALI 8 o 25[1P1.4/ADC4
INTO/P3.2]9 D 24[1P1.3/ADC3
po.1 10 23[JP02
INT1/P3.3 11 22 [P1.2/ADC2/EX_LVD
CLKOUTO/ECI/TO/P3.4 12 21[1PI1.1/ADC1
CLKOUTI/CCP1/T1/P3.5[]13 20[—P1.0/ADCO
P2414 19— P3.7/CCPO
P25 15 18 P27 g LEDI
Gnd[J16 17[JP2.6 LED2 /]
1/0
o LED3 /]
LED4]
/0
I/O dynamic scan driver 4 groups of RS
.. .. a
digital tube anode circuit /0
R, b /
1/0 R’
C
1o RS d
1/0 R0
€
Vo R10 f
/0 R11
o RI2 d
1/0
1Kohm*8

N—

92 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:

86-755-82905966

4.11 1/0 immediately drive LCD application circuit

SEG1
SEG2
SEG3

SEG1 /

SEG2_A
SEG3

SEG4
SEGS
SEG6
SEG7
SEGS8
COMI1
COM2
COM3
COM4

HEHAB

SEG4 /
SEG5 /
SEG6 /
SEG7 /
SEG8 /
| com1_/
COM2 /
COM3
COM4 /

LCD4X8 1/2 BIAS

7

How to light on the LCD pixels:
When the pixels corresponding COM-side and SEG-side voltage difference is greater than 1/2VCC, this
pixel is lit, otherwise off

Contrl SEG-side (Segment) :
/O direct drive Segment lines, control Segment output high-level (VCC) or low-level (0V).
Contrl COM-side (Common) :
1/O port and two 100K dividing resistors jointly controlled Common line, when the 10 output "0", the
Common-line is low level (0V), when the 10 push-pull output "1", the Common line is high level (VCC),
when IO as high-impedance input, the Common line is 1/2VCC.

N

e SEG1 /
10 SEG2 /

_____SEG4
Vo — s
1o SEG6 /
1o SEG7 /
1o SEG8
10 COM1 /
10 COM2 /
10 COM3 /
10 COM4 /

vccC
l
[T]Rl [T]Rz ﬁRS R4
100KQ LI100KQ L1100KQ L]100KQ
coMml |
N COM2
N\ COM3
AN COM4
RS R6 R7 R8
’1]1001(9 [1]100KQ ’1]1001({2 100KQ
L

vCC
/ AN [T]Rl [T]Rz ﬁR3 R4
100KQ Lf100KQ L1100kQ LI100KQ
SEG] SEG1 / \\ COM1 o
SEG2
SEG2 f——r2 N COM3
SEG3 SEG3 N COM4
[T | secs —3E4 SEGH ’1]R5 [1]R6 ’1]R7 l:]RS
1o ——SEGL /] 100kQ ook Lliooka Lliooke
T | sF¢s SEGS 1 o SEG2_
1| sece SEG6 1 1o — SEG3 g
Tl SEGT_/ vo ——SEG4
SEG7 SEG5 1/0 control
1/0
|:|j SEG8 SEGS 1o —SEG6 /]
COMI A 1o SEG7_/ Before MCU enter Power Down
CoMI oMz 1o SEG8 mode, the I/O output high level,
/ . .
com2 e —/281;44; then Common side will have no
—/
CcoM3 COM3 7¢ leakage current
CoM4 1o ——EOM3
coms|— LM A COM4
/0 ———/
LCD4X8 1/2 BIAS
STC MCU Limited. website: www.STCMCU.com 93

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

4.12 Using A/D Conversion to scan key application circuit

N\
CLKOUT2/ADCO/P1.0 1 40 Vee +5V
ADCI/P1.I 2 39E1P0.0
RxD2/ECUADC2/P1.2] 3 381 P0.1
TxD2/CPPO/ADC3/P1.3 | 4 37E3P02 ADCx
SS/CPPI/ADC4/P1.4 [5 36E1P0.3
MOSI/ADC5/P1.5 = 6 35EP0.4 eocece
MISO/ADC6/P1.6 7 34P0.5 4TpF
SCLK/ADC7/P1.7 8 33E3P06 R6
__ P47RSTEH9 T nEgror 8.2KQ
WNTRDPI0ET 10 D 31E3EX LVDP4GRST2
TxD/P3.1 [11 o 30JALEP4s w6
INTO/P3.2] 12 A 29[INA/P4.4
_INT1/P3.3]13 =) 28[1P2.7/A15 XXXl
CLKOUTO/INT/TO/P3.4] 14 27 P2.6/A14 L= 0 005 051 I'L5 1520 2025
CLKOUTI/INT/T1/P3.5] 15 26 JP2.5/A13 =
WR/P3.6] 16 25 P2.4/A12
RDP3.7E] 17 24 P2.3/Al11 L (.
XTAL2 18 23 P2.2/A10 This circuit can achieve a signle key
XTALL = B =TSO or combin key scan, resistance need to
configure the actual needs
This circuit use 10 keys spaced partial pressure, for each key, range
of allowed error is +/-0.25V, it can effectively avoid failure of key
detection because of resistance or temperature drift. If the requested
+5V

key detection more stable and reliable, can reduce the number of
buttons, to relax the voltage range of each key

swll

94 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Chapter 5. Instruction System
5.1 Addressing Modes

Addressing modes are an integral part of each computer's instruction set. They allow specifyng the source or
destination of data in different ways, depending on the programming situation. There are five modes available:

* Immediate

» Direct

* Indirect

* Register

* Indexed

Immediate Constant(IMM)
The value of a constant can follow the opcode in the program memory. For example,
MOV A, #70H
loads the Accumulator with the hex digits 70. The same number could be specified in decimal number as 112.

Direct Addressing(DIR)
In direct addressing the operand is specified by an 8-bit address field in the instruction. Only 128 lowest bytes of
internal data RAM and SFRs can be direct addressed.

Indirect Addressing(IND)
In indirect addressing the instruction specified a register which contains the address of the operand. Both internal
and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be RO or R1 of the selected bank, or the Stack Pointer.
The address register for 16-bit addresses can only be the 16-bit data pointer register —- DPTR.

Register Instruction(REG)

The register banks, containing registers RO through R7, can be accessed by certain instructions which carry a 3-bit
register specification within the opcode of the instruction. Instructions that access the registers this way are code
efficient because this mode eliminates the need of an extra address byte. When such instruction is executed, one
of the eight registers in the selected bank is accessed.

Register-Specific Instruction
Some instructions are specific to a certain register. For example, some instructions always operate on the
accumulator or data pointer,etc. No address byte is needed for such instructions. The opcode itself does it.

Index Addressing

Only program memory can be accessed with indexed addressing and it can only be read. This addressing mode is
intended for reading look-up tables in program memory. A 16-bit base register(either DPTR or PC) points to the
base of the table, and the accumulator is set up with the table entry number. Another type of indexed
addressing is used in the conditional jump instruction.

In conditional jump, the destination address is computed as the sum of the base pointer and the
accumulator.

STC MCU Limited. website: www.STCMCU.com 95

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

5.2 Instruction Set Summary

The STC MCU instructions are fully compatible with the standard 8051's,which are divided among five functional
groups:

* Arithmetic

* Logical

* Data transfer

* Boolean variable

* Program branching
The following tables provides a quick reference chart showing all the 8051 and STC 1T MCU instructions. Once
you are familiar with the instruction set, this chart should prove a handy and quick source of reference.

Execution Clocks of Execution Clocks of
Conventional 12T 8051 STC12C5A60S2 series

'y

Mnemonic Description Byte Execution clocks|Execution clocks I'Efﬁciency
of 12T MCU |of STC 1T MCU | improved

ARITHMETIC OPERATIONS

ADD A, Rn Add register to Accumulator 1 12 2 6x
ADD A, direct |Add ditect byte to Accumulator 2 12 3 4x
ADD A, @Ri |Add indirect RAM to Accumulator 1 12 3 4x
ADD A, #data |Add immediate data to Accumulator 2 12 2 6x
ADDC A,Rn Add register to Accumulator with Carry 1 12 2 6x
ADDC A, direct |Add direct byte to Accumulator with Carry 2 12 3 4x
ADDC A, @Ri |Add indirect RAM to Accumulator with Carry 1 12 3 4x
ADDC A, #data |Add immediate data to Acc with Carry 2 12 2 6x
SUBB A,Rn Subtract Register from Acc wih borrow 1 12 2 6x
SUBB A, direct |Subtract direct byte from Acc with borrow 2 12 3 4x
SUBB A, @Ri |Subtract indirect RAM from ACC with borrow 1 12 3 4x
SUBB A, #data |Substract immediate data from ACC with borrow| 2 12 2 6X
INC A Increment Accumulator 1 12 2 6x
INC Rn Increment register 1 12 3 4x
INC direct Increment direct byte 2 12 4 3x
INC @Ri Increment direct RAM 1 12 4 3x
DEC A Decrement Accumulator 1 12 2 6x
DEC Rn Decrement Register 1 12 3 4x
DEC direct Decrement direct byte 2 12 4 3x
DEC @Ri Decrement indirect RAM 1 12 4 3x
INC DPTR Increment Data Pointer 1 24 1 24x
MUL AB Multiply A & B 1 48 4 12x
DIV AB Divde A by B 1 48 5 9.6x
DA A Decimal Adjust Accumulator 1 12 4 3x

96 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
. .. Execution clocks | Execution clocks | Efficiency
Mnemonic Description Byte of 12T MCU | of STC 1T MCU | improved
LOGICAL OPERATIONS
ANL A, Rn AND Register to Accumulator 1 12 2 6x
ANL A, direct AND direct btye to Accumulator 2 12 3 4x
ANL A, @Ri AND indirect RAM to Accumulator 1 12 3 4x
ANL A, #data AND immediate data to Accumulator 2 12 2 6x
ANL direct, A AND Accumulator to direct byte 2 12 4 3x
ANL direct, #data [AND immediate data to direct byte 3 24 4 6x
ORL A, Rn OR register to Accumulator 1 12 2 6x
ORL A.direct OR direct byte to Accumulator 2 12 3 4x
ORL A,@Ri OR indirect RAM to Accumulator 1 12 3 4x
ORL A, #data OR immediate data to Accumulator 2 12 2 6x
ORL direct, A OR Accumulator to direct byte 2 12 4 3x
ORL direct,#data OR immediate data to direct byte 3 24 4 6x
XRL A, Rn Exclusive-OR register to Accumulator 1 12 2 6x
XRL A, direct Exclusive-OR direct byte to Accumulator 2 12 3 4x
XRL A, @Ri Exclusive-OR indirect RAM to 1 12 3 4x
Accumulator
XRL A, #data Exclusive-OR immediate data to 2 12 2 6x
Accumulator
XRL direct, A Exclusive-OR Accumulator to direct byte 2 12 4 3x
XRL direct,#data Exclusive-OR immediate data to direct 3 24 4 6x
byte
CLR A Clear Accumulator 1 12 1 12x
CPL A Complement Accumulator 1 12 2 6x
RL A Rotate Accumulator Left 1 12 1 12x
RLC A Rotate Accumulator Left through the Carry| 1 12 1 12x
RR A Rotate Accumulator Right 1 12 1 12x
RRC A Rotate Accumulator Right through the 1 12 1 12x
Carry
SWAP A Swap nibbles within the Accumulator 1 12 1 12x
STC MCU Limited. website: www.STCMCU.com 97

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

. Lo Execution clocks|Execution clocks|Efficiency
Mnemonic Description Byte of 12T MCU |of STC 1T MCU |improved

DATA TRANSFER

MOV A, Rn Move register to Accumulator 1 12 1 12x
MOV A, direct Move direct byte to Accumulator 2 12 2 6x
MOV A,@Ri Move indirect RAM to 1 12 2 6x
MOV A, #data Move immediate data to Accumulator 2 12 2 6Xx
MOV Rn, A Move Accumulator to register 1 12 2 6X
MOV Rn, direct Move direct byte to register 2 24 4 6x
MOV Rn, #data Move immediate data to register 2 12 2 6x
MOV direct, A Move Accumulator to direct byte 2 12 3 4x
MOV direct, Rn Move register to direct byte 2 24 3 8x
MOV direct,direct Move direct byte to direct 3 24 4 6x
MOV direct, @Ri Move indirect RAM to direct byte 2 24 4 6x
MOV direct, #data Move immediate data to direct byte 3 24 3 8x
MOV @Ri, A Move Accumulator to indirect RAM 1 12 3 4x
MOV @R, direct Move direct byte to indirect RAM 2 24 4 6x
MOV @R, #data Move immediate data to indirect RAM 2 12 3 4x
MOV DPTR, #datal6 |Move immdiate data to indirect RAM 2 24 3 8x
MOVC A, @A+DPTR |Move Code byte relative to DPTR to Acc 1 24 4 6x
MOVC A, @A+PC Move Code byte relative to PC to Acc 1 24 4 6x
MOVX A, @Ri Move External RAM(8-bit addr) to Acc 1 24 3 8x
MOVX @Ri, A Move Acc to External RAM(8-bit addr) 1 24 4 6x
MOVX A, @DPTR Move External RAM(16-bit addr) to Acc 1 24 3 8x
MOVX @DPTR, A Move Acc to External RAM (16-bit addr) 1 24 3 8x
PUSH direct Push direct byte onto stack 2 24 4 6x
POP direct POP direct byte from stack 2 24 3 8x
XCH A, Rn Exchange register with Accumulator 1 12 3 4x
XCH A, direct Exchange direct byte with Accumulator 2 12 4 3x
XCH A, @Ri Exchange indirect RAM with Accumulator| 1 12 4 3x
XCHD A, @Ri Exchange low-order Digit indirect RAM| 1 12 4 3x

with Acc

98

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

. .. Execution clocks|Execution clocks| Efficiency
Mnemonic Description Byte of 12T MCU |of STC 1T MCU| improved
BOOLEAN VARIABLE MANIPULATION
CLR C Clear Carry 1 12 1 12x
CLR bit Clear direct bit 2 12 4 3x
SETB C Set Carry 1 12 1 12x
SETB bit Set direct bit 2 12 4 3x
CPL C Complement Carry 1 12 1 12x
CPL bit Complement direct bit 2 12 4 3x
ANL C, bit AND direct bit to Carry 2 24 3 8x
ANL C, /bit AND complement of direct bit to Carry 2 24 3 8x
ORL C, bit OR direct bit to Carry 2 24 3 8x
ORL C, /bit OR complement of direct bit to Carry 2 24 3 8x
MOV C, bit Move direct bit to Carry 2 12 3 4x
MOV bit, C Move Carry to direct bit 2 24 4 6X
JC rel Jump if Carry is set 2 24 3 8x
INC rel Jump if Carry not set 2 24 3 8x
JB bit, rel Jump if direct bit is set 3 24 4 6x
INB bit,rel Jump if direct bit is not set 3 24 4 6x
JBC bit, rel Jump if direct bit is set & clear bit 3 24 5 4.8x
PROGRAM BRANCHING
ACALL addrll Absolute Subroutine Call 2 24 6 4x
LCALL addrl6 Long Subroutine Call 3 24 6 4x
RET Return from Subroutine 1 24 4 6X
RETI Return from interrupt 1 24 4 6x
AJMP addrll Absolute Jump 2 24 3 8x
LIMP addrl6 Long Jump 3 24 4 6x
SIMP rel Short Jump (relative addr) 2 24 3 8x
IMP @A+DPTR Jump indirect relative to the DPTR 1 24 3 8x
JZ rel Jump if Accumulator is Zero 2 24 3 8x
INZ rel Jump if Accumulator is not Zero 2 24 3 8x
CINE A, direct,rel Compare direct byte to Acc and jump if| 3 24 5 4.8x
not equal
CINE A #data,rel Compare immediate to Acc and Jump if| 3 24 4 6x
not equal
CINE Rn,#data,rel Compare immediate to register and Jump| 3 24 4 6x
if not equal
CINE @Ri,#data,rel |Compare immediate to indirect and jump| 3 24 5 4.8x
if not equal
DINZ Rn, rel Decrement register and jump if not Zero 2 24 4 6x
DINZ direct, rel Decrement direct byte and Jump if not| 3 24 5 4.8x
Zero
NOP No Operation 1 12 1 12x

STC MCU Limited. website: www.STCMCU.com 99

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

Instruction execution speed boost summary:

24 times faster execution speed
12 times faster execution speed
9.6 times faster execution speed
8 times faster execution speed
6 times faster execution speed
4.8 times faster execution speed
4 times faster execution speed
3 times faster execution speed
24 times faster execution speed

1
12
1
20
39
4
20
14
1

Based on the analysis of frequency of use order statistics, STC 1T series MCU instruction execution speed is

faster than the traditional 8051 MCU 8 ~ 12 times in the same working environment.

Instruction execution clock count:
1 clock instruction 12

2 clock instruction 20

3 clock instruction 38

4 clock instruction 34

5 clock instruction 5

6 clock instruction 2

100 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

5.3 Instruction Definitions

ACALL addr 11
Function: Absolute Call

Description: ACALL unconditionally calls a subroutine located at the indicated address.The instruction
increments the PC twice to obtain the address of the following instruction, then pushes the
16-bit result onto the stack (low-order byte first) and increments the Stack Pointer twice.
The destination address is obtained by suceesively concatenating the five high-order bits of
the incremented PC opcode bits 7-5,and the second byte of the instruction. The subroutine
called must therefore start within the same 2K block of the program memory as the first
byte of the instruction following ACALL. No flags are affected.

Example: Initially SP equals 07H. The label “SUBRTN” is at program memory location 0345H. After
executingthe instruction,

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain
25H and 01H, respectively, and the PC will contain 0345H.

Bytes: 2
Cycles: 2
Encoding: |[al0a9 a8 1] 0 0 1 0] [a7 a6 a5 ad | a3 a2 al a0
Operation: ACALL
(PC)« (PC)+2
(SP)«—(SP) + 1
((sP)) « (PCy)

(SP)—(SP) + 1
((SP)«—(PCis5)
(PC,,,)« page address

ADD A,<src-byte>
Function: Add
Description: ADD adds the byte variable indicated to the Accumulator, leaving the result in the
Accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-
out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag
indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit
6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number
produced as the sum of two positive operands, or a positive sum from two negative operands.
Four source operand addressing modes are allowed: register,direct register-indirect, or
immediate.

Example: The Accumulator holds 0C3H(11000011B) and register 0 holds 0AAH (10101010B). The
instruction,
ADD A,RO

will leave 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry
flag and OV set to 1.

STC MCU Limited. website: www.STCMCU.com 101

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

ADD A,Rn
Bytes: 1
Cycles: 1
Encoding: [00 1 0 [I rrr
Operation: ADD
(A)—(A) + (Rn)
ADD A.,direct
Bytes: 2
Cycles: 1
Encoding: | 00 1 0 [0 1 0 1 [[directaddress
Operation: ADD
(A)«—(A) + (direct)
ADD A,@Ri
Bytes: 1
Cycles: 1
Encoding: [00 1 0 [O 1 1i
Operation: ADD
(A)—=(A) + (Ri))
ADD A #data
Bytes: 2
Cycles: 1
Encoding: | 00 10 [0 10 0] [immediate data
Operation: ADD
(A)—(A) + #data
ADDC A,<src-byte>
Function: Add with Carry
Description: ADDC simultaneously adds the byte variable indicated, the Carry flag and the Accumulator,
leaving the result in the Accumulator. The carry and auxiliary-carry flags are set, respectively,
if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned
integers, the carry flag indicates an overflow occured.
OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not
out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative
number produced as the sum of two positive operands or a positive sum from two negative
operands.
Four source operand addressing modes are allowed: register, direct, register-indirect, or
immediate.
Example: The Accumulator holds 0C3H(11000011B) and register 0 holds 0AAH (10101010B) with the
Carry. The instruction,
ADDC A,R0
will leave 6EH (01101101B) in the Accumulator with the AC flag cleared and both the carry
flag and OV set to 1.
102 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

ADDC A,Rn
Bytes: 1
Cycles: 1
Encoding:|0011|lrrr|
Operation: ADDC
(A)—=(A) +(O) + (Rn)
ADDC A,direct
Bytes: 2
Cycles: 1
Encoding: | 0 0 1 1 [0 10 1| [directaddress |
Operation: ADDC
(A)—(A) + (C) + (direct)
ADDC A,@Ri
Bytes: 1
Cycles: 1
Encoding: | 00 1 1 [0 1 1]
Operation: ADDC
(A)—=(A) +(O) + ((RD)
ADDC A #data
Bytes: 2
Cycles: 1
Encoding: | 0011 [0 1 00| [immediatedata |
Operation: ADDC
(A)«—(A) + (C) + #data
AJMP addr 11
Function: Absolute Jump
Description: AJMP transfers program execution to the indicated address, which is formed at run-time by
concatenating the high-order five bits of the PC (after incrementing the PC twice), opcode
bits 7-5, and the second byte of the instruction. The destination must therefore be within the
same 2K block of program memory as the first byte of the instruction following AJMP.
Example: The label “JMPADR?” is at program memory location 0123H. The instruction,
AJMP JMPADR
is at location 0345H and will load the PC with 0123H.
Bytes: 2
Cycles: 2
Encoding: [al0 a9 a8 0] 0 0 0 1 | [a7 a6 a5 a4 | a3 a2 al a0
Operation: AJMP
(PC)«— (PO)+2
(PC,.0)< page address
STC MCU Limited. website: www.STCMCU.com 103

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

ANL <dest-byte>, <src-byte>

Function:
Description:

Example:

ANL A,Rn
Bytes:
Cycles:
Encoding:

Operation:

ANL A,direct
Bytes:
Cycles:
Encoding:

Operation:

ANL A,@Ri
Bytes:

Cycles:
Encoding:

Operation:

Logical-AND for byte variables
ANL performs the bitwise logical-AND operation between the variables indicated and stores
the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the
Accumulator, the source can use register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the Accumulator or immediate
data.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch not the input pins.

If the Accumulator holds 0C3H(11000011B) and register 0 holds 55H (01010101B) then the
instruction,

ANL A.RO
will leave 41H (01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction will clear combinations of
bits in any RAM location or hardware register. The mask byte determining the pattern of bits
to be cleared would either be a constant contained in the instruction or a value computed in
the Accumulator at run-time. The instruction,

ANL PL #01110011B
will clear bits 7, 3, and 2 of output port 1.

1
1

|0101|lrrr

ANL
(A)—(A) A (Rn)

2
1

| 0 101 |0]01| |directaddress|

ANL
(A)—(A) /\ (direct)

1
1
[01 01 Jou1 1

ANL
(Ay—(A) /\ ((Ri))

104

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

ANL A #data

Bytes:
Cycles:
Encoding:

Operation:

ANL direct,A

Bytes:
Cycles:
Encoding:

Operation:

ANL direct,#data
Bytes:
Cycles:
Encoding:

Operation:

2
1
[0101

ANL
(A)—(A) A #data

| 0100 | | immediate data |

2
1

| 0101 |0010| |directaddress|

ANL
(direct)—(direct) A\ (A)

3
2

| 0101 | 001 1] | direct address | | immediate data |

ANL
(direct)«—(direct) /\ #data

ANL C, <src-bit>
Function: Logical-AND for bit variables
Description: If the Boolean value of the source bit is a logical 0 then clear the carry flag; otherwise
leave the carry flag in its current state. A slash (“/) preceding the operand in the assembly
language indicates that the logical complement of the addressed bit is used as the source
value, but the source bit itself is not affceted. No other flsgs are affected.
Only direct addressing is allowed for the source operand.
Example: Set the carry flag if, and only if, P1.0=1,ACC. 7=1, and OV = 0:
MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE
ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT.7
ANL C,/OV ;AND WITH INVERSE OF OVERFLOW FLAG
ANL C,bit
Bytes: 2
Cycles: 2
Encoding: | 1 000 [00 1 0] [bitaddress |
Operation: ANL
(C) < (O /A (bit)
STC MCU Limited. website: www.STCMCU.com 105

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

ANL C, /bit
Bytes:
Cycles:

Encoding: [10 11 [0000] [bitaddress |

Operation: ADD .
(C)«—(C) /A (bit)

CJINE <dest-byte>, <src-byte>, rel
Function: Compare and Jump if Not Equal

Description: CJNE compares the magnitudes of the first two operands, and branches if their values are not
equal. The branch destination is computed by adding the signed relative-displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction.
The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned
integer value of <src-byte>; otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may
be compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.
Example: The Accumulator contains 34H. Register 7 contains 56H. The first instruction in the sequence
CINE R7#60H, NOT-EQ
R ... N/XR ; R7 = 60H.
NOT_EQ: JC REQ LOW ; IF R7 < 60H.
R e ; R7 > 60H.

sets the carry flag and branches to the instruction at label NOT-EQ. By testing the carry flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the instruction,

WAIT: CINE A,P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since the
Accumulator does equal the data read from P1. (If some other value was being input on PI,
the program will loop at this point until the P1 data changes to 34H.)

CJNE A.direct,rel

Bytes: 3
Cycles: 2
Encoding: | 1 011 | 0101 | | direct address | | rel. address |

Operation: (PC) <« (PC)+3
IF (A) <> (direct)
THEN
(PC) « (PC) + relative offset
IF (A) < (direct)
THEN
(€)1
ELSE
(C)«—0

106 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

CJNE A #data,rel

Bytes:
Cycles: 2
Encoding: | 1011 | 0101 | | immediata data | | rel. address |
Operation: (PC) «— (PC)+3
IF (A) <> (data)
THEN
(PC) « (PC) + relative offset
IF (A) < (data)
THEN
(C)«1
ELSE
(C)«0
CJNE Rn,#data,rel
Bytes: 3
Cycles: 2
Encoding: [1 0 1 1 [1 rrr | [immediata data | [rel address
Operation: (PC) <« (PC)+3
IF (Rn) <> (data)
THEN

(PC) « (PC) + relative offset
IF (Rn) < (data)

THEN
(C)«1
ELSE
(C)«—0
CINE @Ri,#data,rel
Bytes: 3
Cycles: 2
Encoding: | 10 1 1 [0 1 1i]| | immediatedata | | rel address

Operation: (PC) — (PC)+3
IF ((Ri)) <> (data)
THEN
(PC) «— (PC) + relative offset
IF ((R1)) < (data)
THEN
€)1
ELSE
©) <0

STC MCU Limited. website: www.STCMCU.com 107

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
CLR A
Function: Clear Accumulator
Description: The Aecunmlator is cleared (all bits set on zero). No flags are affected.
Example: The Accumulator contains SCH (01011100B). The instruction,
CLR A
will leave the Accumulator set to 00H (00000000B).
Bytes: 1
Cycles: 1
Encoding: [1110 [0100
Operation: CLR
(A)=0
CLR Dbit
Function: Clear bit
Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on

the carry flag or any directly addressable bit.

Example: Port 1 has previously been written with SDH (01011101B). The instruction,
CLR P12
will leave the port set to 59H (01011001B).
CLR C
Bytes: 1
Cycles: 1
Encoding: [1 1 0 0J oo 11
Operation: CLR
(©) <0
CLR bit
Bytes: 2
Cycles: 1
Encoding: | 1 100 [00 1 0] [bitaddress |
Operation: CLR
(bit) « 0
108 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
CPL A
Function: Complement Accumulator
Description: Each bit of the Accumulator is logically complemented (one’s complement). Bits which
previously contained a one are changed to a zero and vice-versa. No flags are affected.
Example: The Accumulator contains SCH(01011100B). The instruction,
CPL A
will leave the Accumulator set to 0A3H (101000011B).
Bytes: 1
Cycles: 1
Encoding: | 1 111 J0100
Operation: CPL
(A= (A)
CPL bit
Function: Complement bit
Description: The bit variable specified is complemented. A bit which had been a one is changed to zero
and vice-versa. No other flags are affected. CLR can operate on the carry or any directly
addressable bit.
Note:When this instruction is used to modify an output pin, the value used as the original
data will be read from the output data latch, not the input pin.
Example: Port 1 has previously been written with SDH (01011101B). The instruction,
CLR Pl1.1
CLR P12
will leave the port set to 59H (01011001B).
CPL C
Bytes: 1
Cycles: 1
Encoding: [10 1 1 J0oo0 11
Operation: CPL
©) < (©
CPL bit
Bytes: 2
Cycles: 1
Encoding: | 1 0 1 1 [0 0 1 0] [_bitaddress
Operation: CPL
(bit) « (bit)
STC MCU Limited. website: www.STCMCU.com 109

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

DA

A

Function:

Description:

Example:

Decimal-adjust Accumulator for Addition

DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of
two variables (each in packed-BCD format), producing two four-bit digits. Any ADD or
ADDOC instruction may have been used to perform the addition.

If Accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one,
six is added to the Accumulator producing the proper BCD digit in the low-order nibble.
This internal addition would set the carry flag if a carry-out of the low-order four-bit field
propagated through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set or if the four high-order bits now exceed nine(1010xxxx-
111xxxx), these high-order bits are incremented by six, producing the proper BCD digit
in the high-order nibble. Again, this would set the carry flag if there was a carry-out of the
high-order bits, but wouldn’t clear the carry. The carry flag thus indicates if the sum of
the original two BCD variables is greater than 100, allowing multiple precision decimal
addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the Accumulator, depending on
initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

The Accumulator holds the value 56H(01010110B) representing the packed BCD digits of
the decimal number 56. Register 3 contains the value 67H (01100111B) representing the
packed BCD digits of the decimal number 67.The carry flag is set. The instruction sequence.

ADDC A,R3
DA A

will first perform a standard twos-complement binary addition, resulting in the value 0BEH
(10111110) in the Accumulator. The carry and auxiliary carry flags will be cleared.

The Decimal Adjust instruction will then alter the Accumulator to the value 24H
(00100100B), indicating the packed BCD digits of the decimal number 24, the low-order
two digits of the decimal sum of 56,67, and the carry-in. The carry flag will be set by the
Decimal Adjust instruction, indicating that a decimal overflow occurred. The true sum 56,
67,and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumula-
tor initially holds 30H (representing the digits of 30 decimal), then the instruction sequence,

ADD A#99H
DA A

will leave the carry set and 29H in the Accumulator, since 30+99=129. The low-order byte
of the sum can be interpreted to mean 30 — 1 =29.

110

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Bytes: 1
Cycles: 1
Encoding: [11 01 Jo10 0]
Operation: DA
-contents of Accumulator are BCD
IF - [[(As) > 9] V(AC) = 1]]
THEN(A3,) < (As) + 6
AND
IF - [[(A) > 9] V(O =1]]
THEN (A;,) < (A;0) +6
DEC byte
Function: Decrement
Description: The variable indicated is decremented by 1. An original value of 00H will underflow to
OFFH.
No flags are affected. Four operand addressing modes are allowed: accumulator, register,
direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H
and 40H, respectively. The instruction sequence,
DEC @RO
DEC RO
DEC @RO
will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH set to OFFH and
3FH.
DEC A
Bytes: 1
Cycles: 1
Encoding: [00 0 1 [0 100
Operation: DEC
(A)—=(A)-1
DEC Rn
Bytes: 1
Cycles: 1
Encoding: | 0001 | l rrr
Operation: DEC
(Rn)«<—(Rn) - 1
STC MCU Limited. website: www.STCMCU.com 111

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

DEC direct
Bytes: 2
Cycles: 1
Encoding: | 00 0 1 [0 10 1| | direct address |

Operation: DEC
(direct)«—(direct) -1

DEC @Ri
Bytes: 1
Cycles: 1
Encoding: [0001 [o 11

Operation: DEC
(Ri))—(Ri)) -1

DIV AB

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit
integer in register B. The Accumulator receives the integer part of the quotient; register B
receives the integer remainder. The carry and OV flags will be cleared.

Exception: if B had originally contained 00H, the values returned in the Accumulator and
B-register will be undefined and the overflow flag will be set. The carry flag is cleared in any
case.

Example: The Accumulator contains 251(OFBH or 11111011B) and B contains 18(12H or 00010010B).
The instruction,

DIV AB

will leave 13 in the Accumulator (ODH or 00001101B) and the value 17 (11H or 00010010B)
in B, since 251 = (13x18) + 17. Carry and OV will both be cleared.

Bytes: 1
Cycles: 4
Encoding: [10 0 0] 0100 |

Operation: DIV
A
By — @

112 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

DJNZ <byte>, <rel-addr>

Function:
Description:

Example:

DJNZ Rn,rel

Decrement and Jump if Not Zero

DJNZ decrements the location indicated by 1, and branches to the address indicated by the
second operand if the resulting value is not zero. An original value of 00H will underflow to
OFFH. No flags are afected. The branch destination would be computed by adding the signed
relative-displacement value in the last instruction byte to the PC, after incrementing the PC
to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H,
respectively. The instruction sequence,

DINZ 40H, LABEL 1
DINZ 50H, LABEL 2
DINZ 60H, LABEL 3

will cause a jump to the instruction at label LABEL 2 with the values 00H, 6FH, and 15H in
the three RAM locations. The first jump was not taken because the result was zero.

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction
The instruction sequence,

MOV R2,#8
TOOOLE: CPL P1.7
DINZ R2, TOOGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1.
Each pulse will last three machine cycles; two for DINZ and one to alter the pin.

Bytes: 2
Cycles: 2
Encoding: | 1 1 01 | I rrr | [reladdess |
Operation: DJNZ
(PC) « (PC)+2
(Rn) < (Rn) -1
IF (Rn)>0or (Rn)<0
THEN
(PC) « (PC)+ rel
DJNZ direct, rel
Bytes: 3
Cycles: 2
Encoding: | 1 1 01 [0 10 1| [directaddress | | rel address
STC MCU Limited. website: www.STCMCU.com 113

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Operation: DINZ
(PC) « (PC) +2
(direct) « (direct) — 1
IF (direct) > 0 or (direct) <0
THEN
(PC) «— (PC) +rel
INC <byte>
Function: Increment
Description: INC increments the indicated variable by 1. An original value of OFFH will overflow to

00H.No flags are affected. Three addressing modes are allowed: register, direct, or register-
indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain OFFH
and 40H, respectively. The instruction sequence,
INC @RO
INC RO
INC @RO
will leave register O set to 7FH and internal RAM locations 7EH and 7FH holding
(respectively) 00H and 41H.
INC A
Bytes: 1
Cycles: 1
Encoding: [00 0 00100
Operation: INC
(A) « (A)+1
INC Rn
Bytes: 1
Cycles: 1
Encoding: [00 0 0] I rrr
Operation: INC
(Rn) < (Rn)+1
INC direct
Bytes: 2
Cycles: 1
Encoding: | 0000 [0 1 01| [direct address |
Operation: INC
(direct)«—(direct) + 1
114 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

INC @Ri
Bytes: 1
Cycles: 1
Encoding: [0000 [0 1 1
Operation: INC
(Ri))—(Ri)) +1
INC DPTR
Function: Increment Data Pointer
Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 2'°) is performed; an
overflow of the low-order byte of the data pointer (DPL) from OFFH to 00H will increment
the high-order-byte (DPH). No flags are affected.
This is the only 16-bit register which can be incremented.
Example: Register DPH and DPL contains 12H and OFEH,respectively. The instruction sequence,
INC DPTR
INC DPTR
INC DPTR
will change DPH and DPL to 13H and O1H.
Bytes:
Cycles: 2
Encoding: [10 1 0] 001 1|
Operation: INC

JB bit, rel

(DPTR) «— (DPTR)+1

Function: Jump if Bit set
Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.
Example: The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The
instruction sequence,
JB P1.2,LABELI
JB ACC.2,LABEL2
will cause program execution to branch to the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding: [00 10 [000 0] [bitaddess | [rel address
Operation: JB
(PC) «— (PC)+ 3
IF (bit) =1
THEN
(PC) « (PC) +rel
STC MCU Limited. website: www.STCMCU.com 115

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

JBC Dit, rel

Function: Jump if Bit is set and Clear bit
Description: If the indicated bit is one,branch to the address indicated;otherwise proceed with the next
instruction. The bit wili not be cleared if it is already a zero. The branch destination is
computed by adding the signed relative-displacement in the third instruction byte to the PC,
after incrementing the PC to the first byte of the next instruction. No flags are affected.
Note: When this instruction is used to test an output pin, the value used as the original data
will be read from the output data latch, not the input pin.
Example: The Accumulator holds S6H (01010110B). The instruction sequence,
JBC ACC.3,LABELI
JBC ACC.2,LABEL2
will cause program execution to continue at the instruction identified by the label LABEL2,
with the Accumulator modified to 52H (01010010B).
Bytes: 3
Cycles: 2
Encoding: | 0001 | 0000 | | bit address | | rel. address
Operation: JBC
(PC) « (PC)+3
IF (bit) =1
THEN
(bit) < 0
(PC) « (PC) +rel
JC rel
Function: Jump if Carry is set
Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice.No flags are affected.
Example: The carry flag is cleared. The instruction sequence,
\[@ LABELI
CPL C
\[@ LABEL2s
will set the carry and cause program execution to continue at the instruction identified by the
label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 0100 | 0000 | | rel. address
Operation: JC
(PC) < (PC)+2
IF (O)=1
THEN
(PC) < (PC) +rel
116 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

JMP @A+DPTR
Function: Jump indirect
Description: Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer,
and load the resulting sum to the program counter. This will be the address for subsequent
instruction fetches. Sixteen-bit addition is performed (modulo 2'°): a carry-out from the low-
order eight bits propagates through the higher-order bits. Neither the Accumulator nor the
Data Pointer is altered. No flags are affected.
Example: An even number from 0 to 6 is in the Accumulator. The following sequence of instructions
will branch to one of four AJMP instructions in a jump table starting at]JMP_TBL:
MOV DPTR, #)MP_TBL
JMP @A+DPTR
JMP-TBL: AJMP LABELO
AJMP LABELI1
AJMP LABEL2
AJMP LABEL3
If the Accumulator equals 04H when starting this sequence, execution will jump to label
LABEL2. Remember that AJMP is a two-byte instruction, so the jump instructions start at
every other address.
Bytes: 1
Cycles: 2
Encoding: | 0111 [oo0 1 1]
Operation: JMP
(PC) « (A) + (DPTR)

JNB bit, rel

Function: Jump if Bit is not set
Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.
Example: The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B).
The instruction sequence,
INB P1.3, LABEL1
INB ACC.3, LABEL2
will cause program execution to continue at the instruction at label LABEL2
Bytes: 3
Cycles: 2
Encoding: | 0011 | 0000 | | bit address | | rel. address
Operation: JNB
(PC) «— (PC)+ 3
IF (bit)=0
THEN (PC) « (PC) +rel
STC MCU Limited. website: www.STCMCU.com 117

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

JNC rel
Function: Jump if Carry not set
Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The carry flag is not modified
Example: The carry flag is set. The instruction sequence,
JNC LABELI1
CPL C
JNC LABEL2
will clear the carry and cause program execution to continue at the instruction identified by
the label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 0101 [000 0] [reladdress
Operation: JNC
(PC) « (PC)+2
IF (C)=0
THEN (PC) « (PC) + rel
JNZ rel
Function: Jump if Accumulator Not Zero
Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed
with the next instruction. The branch destination is computed by adding the signed relative-
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.
Example: The Accumulator originally holds 00H. The instruction sequence,
INZ LABELI1
INC A
INZ LAEEL2
will set the Accumulator to 01H and continue at label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 0111 | 0000] | rel. address
Operation: JNZ
(PC) « (PC)+2
IF (A)#0
THEN (PC) « (PC) + rel
118 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

JZ rel
Function: Jump if Accumulator Zero

Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed
with the next instruction. The branch destination is computed by adding the signed relative-
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.

Example: The Accumulator originally contains 01H. The instruction sequence,

JZ LABELI
DEC A
JZ LAEEL2

will change the Accumulator to 00H and cause program execution to continue at the
instruction identified by the label LABEL2.

Bytes: 2
Cycles: 2
Encoding: | 01 10 [000 0] [reladdress
Operation: JZ
(PC) « (PC)+2
IF (A)=0

THEN (PC) « (PC) +rel
LCALL addr16

Function: Long call

Description: LCALL calls a subroutine loated at the indicated address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first), incrementing the Stack Pointer by two. The high-order
and low-order bytes of the PC are then loaded, respectively, with the second and third bytes
of the LCALL instruction. Program execution continues with the instruction at this address.
The subroutine may therefore begin anywhere in the full 64K-byte program memory address
space. No flags are affected.

Example: Initially the Stack Pointer equals 07H. The label “SUBRTN” is assigned to program memory
location 1234H. After executing the instruction,

LCALL SUBRTN

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H
will contain 26H and 01H, and the PC will contain 1234H.

Bytes: 3
Cycles: 2
Encoding: | 000 1 | 0010 | | addr15-addr8 | | addr7-addr0
Operation: LCALL
(PC) — (PC) +3
(SP) — (SP)+ 1
((SP)) « (PCy.)

(SP) — (SP)+1
((SP)) « (PCys5)
(PC) « addr,s,,

STC MCU Limited. website: www.STCMCU.com 119

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

LJMP addrlé

Function:

Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

Long Jump

LJMP causes an unconditional branch to the indicated address, by loading the high-order
and low-order bytes of the PC (respectively) with the second and third instruction bytes. The
destination may therefore be anywhere in the full 64K program memory address space. No
flags are affected.

The label “JMPADR” is assigned to the instruction at program memory location 1234H. The
instruction,

LIMP JMPADR

at location 0123H will load the program counter with 1234H.
3
2
| 0000

LIMP
(PC) « addr;,

0010 | | addr15-addr8 | | addr7-addr0

MOV <dest-byte>, <src-byte>

Function: Move byte variable
Description: The byte variable indicated by the second operand is copied into the location specified by the
first operand. The source byte is not affected. No other register or flag is affected.
This is by far the most flexible operation. Fifteen combinations of source and destination
addressing modes are allowed.
Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data

present at input port 1 is 11001010B (0OCAH).
MOV RO,#30H ;R0<=30H
MOV A, @RO ;A <=40H
MOV RI1,A ;R1 <=40H
MOV B, @RI :B<=10H
MOV @RI, Pl ;RAM (40H) <= 0CAH
MOV P2,PI ;P2 #0CAH
leaves the value 30H in register 0,40H in both the Accumulator and register 1,10H in register
B, and 0CAH(11001010B) both in RAM location 40H and output on port 2.

MOV A,Rn

Bytes: 1
Cycles: 1
Encoding: [11 1 0 [1 rrr
Operation: MOV

(A) < (Rn)

120 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

*MOV A,direct
Bytes: 2
Cycles: 1

Encoding: [1 110 [010

1] | direct address |

MOV

(A)« (direct)

*MOV A, ACC is not a valid instruction
MOV A,@Ri

Operation:

Bytes: 1
Cycles: 1
Encoding: | 11 1 0 [0 1 1
Operation: MOV
(A) < ((Ri))
MOV A #data
Bytes: 2
Cycles: 1
Encoding: | 01 1 1 [0 10 0] [immediatedata
Operation: MOV
(A)« #data
MOV Rn, A
Bytes: 1
Cycles: 1
Encoding: [1 111 [1rrr
Operation: MOV
(Rn)«—(A)
MOV Rn,direct
Bytes: 2
Cycles: 2
Encoding: | 1 010 | 1 rrr | | directaddr
Operation: MOV
(Rn)«—(direct)
MOV Rn,#data
Bytes: 2
Cycles: 1
Encoding: | 01 11 | lrrr | |immediatedata
Operation: MOV
(Rn) « #data
STC MCU Limited. website: www.STCMCU.com 121

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

MOV direct, A

Bytes:
Cycles:
Encoding:

Operation:

2
1

[1111 Jo

101] | direct address |

MOV
(direct) « (A)

MOV direct, Rn

Bytes:
Cycles:
Encoding:

Operation:

2
2

[1oo0o0 [1

rror | | direct address |

MOV
(direct) « (Rn)

MOV direct, direct

Bytes:
Cycles:
Encoding:

Operation:

3
2

[1oo0o0 Jo

101 | | dir.addr. (src) |

MOV
(direct)«— (direct)

MOV direct, @Ri

Bytes:
Cycles:

Encoding:

Operation:

2
2

[1oo0o0 Jo

11 | | direct addr. |

MOV
(direct)—((Ri))

MOV direct,#data

Bytes:
Cycles:
Encoding:

Operation:

MOV @Ri, A
Bytes:

Cycles:
Encoding:

Operation:

3
2

[o01 11]o1

01| | direct address |

MOV
(direct) «— #data

111

MOV
((Ri)) < (A)

122

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

MOV @Ri, direct

Bytes: 2
Cycles: 2
Encoding: | 1010 [0 1 1i] [directaddr
Operation: MOV
((Ri)) « (direct)
MOV @RI, #data
Bytes: 2
Cycles: 1
Encoding: | 0111 | 011 | |immediatedata|
Operation: MOV
((R1)) « #data

MOV <dest-bit>, <src-bit>

Function: Move bit data
Description: The Boolean variable indicated by the second operand is copied into the location specified by
the first operand. One of the operands must be the carry flag; the other may be any directly
addressable bit. No other register or flag is affected.
Example: The carry flag is originally set. The data present at input Port 3 is 11000101B. The data
previously written to output Port 1 is 35H (00110101B).
MOV P13,C
MOV C,P33
MOV P1.2,C
will leave the carry cleared and change Port 1 to 39H (00111001B).
MOV C,bit
Bytes: 2
Cycles: 1
Encoding: [1 0 1 0 [0 0 1 1] [bit address |
Operation: MOV
(C) « (bit)
MOV bit,C
Bytes: 2
Cycles:
Encoding: | 1 0 0 1 0 0 1 0] |_bitaddress
Operation: MOV
(bit)— (C)
STC MCU Limited. website: www.STCMCU.com 123

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

MOV DPTR, #data 16

Function:

Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

Load Data Pointer with a 16-bit constant

The Data Pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded
into the second and third bytes of the instruction. The second byte (DPH) is the high-order
byte, while the third byte (DPL) holds the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

The instruction,
MOV DPTR, #1234H
will load the value 1234H into the Data Pointer: DPH will hold 12H and DPL will hold 34H.

3

2

[1 00 1J0 o0 o0 0] | immediate data15-8
MOV

(DPTR) « #data,s,,
DPH DPL « #data, ; #data,,

MOVC A, @A+ <base-reg>

Function:
Description:

Example:

Move Code byte

The MOVC instructions load the Accumulator with a code byte, or constant from program
memory. The address of the byte fetched is the sum of the original unsigned eight-bit.
Accumulator contents and the contents of a sixteen-bit base register, which may be either
the Data Pointer or the PC. In the latter case, the PC is incremented to the address of the
following instruction before being added with the Accumulator; otherwise the base register
is not altered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits
may propagate through higher-order bits. No flags are affected.

A value between 0 and 3 is in the Accumulator. The following instructions will translate the
value in the Accumulator to one of four values defimed by the DB (define byte) directive.
REL-PC: INC A

MOVC A, @A+PC

RET

DB 66H

DB 77H

DB 88H

DB 99H

If the subroutine is called with the Accumulator equal to 01H, it will return with 77H in the
Accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the Accumulator instead.

MOVC A,@A+DPTR

Bytes: 1
Cycles: 2
Encoding: [10 0 1 Joo 1 1]
Operation: MOVC
(A) < ((A)+(DPTR))
124 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

MOVC A,@A+PC

Bytes: 1
Cycles: 2
Encoding: [1000 J0oO 11
Operation: MOVC
(PC) « (PC)+1
(A) < (AHPCO))

MOVX <dest-byte>, <src-byte>
Function: Move External

Description: The MOVX instructions transfer data between the Accumulator and a byte of external data
memory, hence the “X” appended to MOV. There are two types of instructions, differing in
whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM.

In the first type, the contents of RO or R1 in the current register bank provide an eight-bit
address multiplexed with data on PO. Eight bits are sufficient for external I/O expansion
decoding or for a relatively small RAM array. For somewhat larger arrays, any output port
pins can be used to output higher-order address bits. These pins would be controlled by an
output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a sixteen-bit address.

P2 outputs the high-order eight address bits (the contents of DPH) while PO multiplexes the
low-order eight bits (DPL) with data. The P2 Special Function Register retains its previous
contents while the P2 output buffers are emitting the contents of DPH. This form is faster and
more efficient when accessing very large data arrays (up to 64K bytes), since no additional
instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with its
high-order address lines driven by P2 can be addressed via the Data Pointer, or with code to
output high-order address bits to P2 followed by a MOVX instruction using RO or R1.

Example: An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel 8155 RAM/
[/O/Timer) is connected to the 8051 Port 0. Port 3 provides control lines for the external
RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 34H.
Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A, @RI
MOVX @RO, A

copies the value 56H into both the Accumulator and external RAM location 12H.
MOVX A,@Ri

Bytes: 1
Cycles: 2
Encoding: [11 1 0 [0oO i

Operation: MOVX
(A) < ((Ri))

STC MCU Limited. website: www.STCMCU.com 125

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

MOVX A,@DPTR

Bytes: 1
Cycles: 2
Encoding: | 1 110 [0000
Operation: MOVX
(A) < ((DPTR))
MOVX @Ri, A
Bytes: 1
Cycles: 2
Encoding: [1 111 [oo0T1i
Operation: MOVX
(Ri))—(A)
MOVX @DPTR,A
Bytes: 1
Cycles: 2
Encoding: | 1 1 11 [0000
Operation: MOVX
(DPTR)«—(A)
MUL AB
Function: Multiply
Description: MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The
low-order byte of the sixteen-bit product is left in the Accumulator, and the high-order byte
in B. If the product is greater than 255 (OFFH) the overflow flag is set; otherwise it is cleared.
The carry flag is always cleared
Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160
(0AOH). The instruction,
MUL AB
will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the
Accumulator is cleared. The overflow flag is set, carry is cleared.
Bytes: 1
Cycles: 4
Encoding: [1 0 1 0Jo 1 0 0
Operation: MUL
(A)7o— (A)X(B)
(B)IS-S
126 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
NOP
Function: No Operation
Description: Execution continues at the following instruction. Other than the PC, no registers or flags are
affected.

Example: It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A
simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles
must be inserted. This may be done (assuming no interrupts are enabled) with the instruction
sequence.

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7
Bytes: 1
Cycles: 1
Encoding: [0 0 0 0J0o 0 0 0
Operation: NOP

(PC) « (PC)+1

ORL <dest-byte>, <src-byte>

Function: Logical-OR for byte variables
Description: ORL performs the bitwise logical-OR operation between the indicated variables, storing the
results in the destination byte. No flags are affected.
The two operands allow six addressing mode combinations. When the destination is the
Accumulator, the source can use register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the Accumulator or immediate
data.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
Example: If the Accumulator holds 0C3H (11000011B) and RO holds 55H (01010101B) then the
instruction,
ORL A,RO
will leave the Accumulator holding the value 0D7H (11010111B).
When the destination is a directly addressed byte, the instruction can set combinations of bits
in any RAM location or hardware register. The pattern of bits to be set is determined by a
mask byte, which may be either a constant data value in the instruction or a variable
computed in the Accumulator at run-time.The instruction,
ORL P1,#00110010B
will set bits 5,4, and 1of output Port 1.
STC MCU Limited. website: www.STCMCU.com 127

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

ORL A,Rn
Bytes:
Cycles:
Encoding:

Operation:

ORL A,direct
Bytes:
Cycles:
Encoding:

Operation:

ORL A,@Ri

Bytes:
Cycles:
Encoding:

Operation:

ORL A #data
Bytes:
Cycles:
Encoding:

Operation:

ORL direct, A
Bytes:

Cycles:
Encoding:

Operation:

1
1

|0100|1rrr

ORL
(A) — (A)V(Rn)

2
1

| 01 00 |0 10 1] |directaddress|

ORL
(A)— (A)V (direct)

1
1

[0 1 00Jo 1 1

ORL

(A)=(A)V((RD)

2

1

[0 1 00]Jo0o 1 0 0] [immediatedata
ORL

(A)— (A)V f#data

2
1
| 0100 |0 01 0] |directaddress|

ORL
(direct)«— (direct) V (A)

ORL direct, #data

Bytes:
Cycles:
Encoding:

Operation:

3
2

| 01 00 |0 0 1 1| |directaddress|

| immediate data |

ORL
(direct) « (direct) \/ #data

128

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
ORL C, <src-bit>
Function: Logical-OR for bit variables
Description: Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state
otherwise. A slash (“/) preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself is
not affected. No other flags are affected.
Example: Set the carry flag if and only if P1.0 =1, ACC. 7=1, or OV =0:
MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL C,ACC.7 ;OR CARRY WITH THE ACC.BIT 7
ORL C,/OV ;OR CARRY WITH THE INVERSE OF OV
ORL C, bit
Bytes:
Cycles: 2
Encoding: [0 1 1 1 Jo 0 1 0] [bit address
Operation: ORL
(C) — (O)V(bit)
ORL C, /bit
Bytes:
Cycles: 2
Encoding: | 1 0 1 0 [0 0 0 0] [bitaddress
Operation: ORL o
(©) —(O)V (bit)
POP direct
Function: Pop from stack
Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the
Stack Pointer is decremented by one. The value read is then transferred to the directly
addressed byte indicated. No flags are affected.
Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H
through 32H contain the values 20H, 23H, and 01H, respectively. The instruction sequence,
POP DPH
POP DPL
will leave the Stack Pointer equal to the value 30H and the Data Pointer set to 0123H. At this
point the instruction,
POP SP
will leave the Stack Pointer set to 20H. Note that in this special case the Stack Pointer was
decremented to 2FH before being loaded with the value popped (20H).
Bytes: 2
Cycles: 2
Encoding: | 1 1 01 | 00 0O | | direct address
Operation: POP
(diect) < ((SP))
(SP) < (SP)-1
STC MCU Limited. website: www.STCMCU.com 129

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

PUSH direct

Function: Push onto stack
Description: The Stack Pointer is incremented by one. The contents of the indicated variableis then copied
into the internal RAM location addressed by the Stack Pointer. Otherwise no flags are
affected.
Example: On entering interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the
value 0123H. The instruction sequence,
PUSH DPL
PUSH DPH
will leave the Stack Pointer set to 0BH and store 23H and 01H in internal RAM locations
0AH and OBH, respectively.
Bytes:
Cycles:
Encoding: | 1 1 00 | 00 00 | | direct address
Operation: PUSH
(SP) «+(SP) +1
((SP)) « (direct)
RET
Function: Return from subroutine
Description: RET pops the high-and low-order bytes of the PC successively from the stack, decrementing
the Stack Pointer by two. Program execution continues at the resulting address, generally the
instruction immediately following an ACALL or LCALL. No flags are affected.
Example: The Stack Pointer originally contains the value 0BH. Internal RAM locations 0AH and 0BH
contain the values 23H and 01H, respectively. The instruction,
RET
will leave the Stack Pointer equal to the value 09H. Program execution will continue at
location 0123H.
Bytes:
Cycles: 2
Encoding: [0 0 10 Jo 0 1 0
Operation: RET
(PCys5) < ((SP)
(SP) « (SP) -1
(PCyy) — ((SP))
(SP) « (SP) -1
130 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

RETI
Function: Return from interrupt

Description: RETI pops the high- and low-order bytes of the PC successively from the stack, and restores
the interrupt logic to accept additional interrupts at the same priority level as the one just
processed. The Stack Pointer is left decremented by two. No other registers are affected; the
PSW is not automatically restored to its pre-interrupt status. Program execution continues at
the resulting address, which is generally the instruction immediately after the point at which
the interrupt request was detected. If a lower- or same-level interrupt had been pending when
the RETI instruction is executed, that one instruction will be executed before the pending
interrupt is processed.

Example: The Stack Pointer originally contains the value 0BH. An interrupt was detected during the
instruction ending at location 0122H. Internal RAM locations 0AH and O0BH contain the
values 23H and 01H, respectively. The instruction,

RETI
will leave the Stack Pointer equal to 09H and return program execution to location 0123H.
Bytes: 1
Cycles: 2
Encoding: [0 0 11 Jo 0 1 0
Operation: RETI
(PCis5) < ((SP))
(SP) < (SP) -1
(PCr,) < ((SP))
(SP) « (SP) -1
RL A
Function: Rotate Accumulator Left
Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0
position. No flags are affected.
Example: The Accumulator holds the value 0CSH (11000101B). The instruction,
RL A
leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: | 0 0 10 [0 0 1 1|
Operation: RL
(Antl) < (An) n=0-6
(A0) — (A7)
STC MCU Limited. website: www.STCMCU.com 131

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

RLC A
Function: Rotate Accumulator Left through the Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit
7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position.
No other flags are affected.
Example: The Accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction,
RLC A
leaves the Accumulator holding the value 8BH (10001011B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: [0 0 11 Jo 0 1 1]
Operation: RLC
(Antl) < (An) n=0-6
(A0) (O
(©) < (A7)
RR A
Function: Rotate Accumulator Right
Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7
position. No flags are affected.
Example: The Accumulator holds the value 0C5H (11000101B). The instruction,
RR A
leaves the Accumulator holding the value OE2H (11100010B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: [0 0 00 [0 0 1 1]
Operation: RR
(An) < (Antl) n=0-6
(A7) « (A0)
RRC A
Function: Rotate Accumulator Right through the Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right.
Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7
position.No other flags are affected.
Example: The Accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction,
RRC A
leaves the Accumulator holding the value 62H (01100010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: [0 0 01 [0 0 1 1]
Operation: RRC
(Ant+1) < (An) n=0-6
(A7) < (O
(©) —(A0)
132 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

SETB <bit>
Function: Set bit
Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly
addressable bit. No other flags are affected
Example: The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B).
The instructions,
SETB C
SETB P1.0
will leave the carry flag set to 1 and change the data output on Port 1 to 35H (00110101B).
SETB C
Bytes: 1
Cycles: 1
Encoding: | 1 1 01 Jo 0 1 1
Operation: SETB
©) 1
SETB bit
Bytes: 2
Cycles: 1
Encoding: [1 1 0 1]Jo 0 1 0] [bitaddress |
Operation: SETB
(bit) « 1
SIMP rel
Function: Short Jump
Description: Program control branches unconditionally to the address indicated. The branch destination is
computed by adding the signed displacement in the second instruction byte to the PC, after
incrementing the PC twice. Therefore, the range of destinations allowed is from 128bytes
preceding this instruction to 127 bytes following it.
Example: The label “RELADR? is assigned to an instruction at program memory location 0123H. The
instruction,
SIMP RELADR
will assemble into location 0100H. After the instruction is executed, the PC will contain the
value 0123H.
(Note: Under the above conditions the instruction following SIMP will be at 102H.Therefore,
the displacement byte of the instruction will be the relative offset (0123H - 0102H) = 21H.
Put another way, an SIMP with a displacement of OFEH would be an one-instruction infinite
loop).
Bytes: 2
Cycles: 2
Encoding: | 1 0 00 [0 0 0 0] [reladdress |
Operation: SJMP
(PC) < (PO)+2
(PC) « (PC)+rel
STC MCU Limited. website: www.STCMCU.com 133

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
SUBB A, <src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator,
leaving the result in the Accumulator. SUBB sets the carry (borrow)flag if a borrow is needed
for bit 7, and clears C otherwise.(If C was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the carry is subtracted from the Accumulator along with the source operand).AC is set if a
borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6,
but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative
value is subtracted from a positive value, or a positive result when a positive number is
subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

Example: The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the
carry flag is set. The instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared
but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the carry (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR C instruction.

SUBB A, Rn
Bytes: 1
Cycles: 1
Encoding: [10 0 I [I rrr |

Operation: SUBB
(A) —(A)-(©) - (Rn)

SUBB A, direct

Bytes: 2
Cycles: 1
Encoding: [1 0 0 1 [0 1 0 1] [directaddress |

Operation: SUBB
(A) « (A) - (C) - (direct)

SUBB A, @Ri
Bytes: 1
Cycles: 1
Encoding: [1 0 0 1 Jo 1 1 i

Operation: SUBB
(A) < (A)- (O) - (R))

134 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
SUBB A, #data
Bytes: 2
Cycles: 1
Encoding: [1 0 0 1][0 1 0 0| | immediatedata |
Operation: SUBB
(A) < (A) - (C) - #data
SWAP A
Function: Swap nibbles within the Accumulator
Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator
(bits 3-0 and bits 7-4). The operation can also be thought of as a four-bit rotate instruction.
No flags are affected.
Example: The Accumulator holds the value 0C5H (11000101B). The instruction,
SWAP A
leaves the Accumulator holding the value SCH (01011100B).
Bytes: 1
Cycles: 1
Encoding: | 1 1 00 [0 1 0 0
Operation: SWAP

(Asp) <= (Ary)

XCH A, <byte>

Function: Exchange Accumulator with byte variable
Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time
writing the original Accumulator contents to the indicated variable. The source/destination
operand can use register, direct, or register-indirect addressing.
Example: RO contains the address 20H. The Accumulator holds the value 3FH (00111111B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,
XCH A, @RO
will leave RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in
the accumulator.
XCH A,Rn
Bytes: 1
Cycles: 1
Encoding: [11 0 0 [1 rrr
Operation: XCH
(A) <= (Rn)
XCH A, direct
Bytes: 2
Cycles: 1
Encoding: | 1 1 0 0 [0 1 0 1| [directaddress
Operation: XCH
(A) <= (direct)
STC MCU Limited. website: www.STCMCU.com 135

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

XCH A, @Ri
Bytes: 1
Cycles: 1
Encoding: | 1100 |01 1 i
Operation: XCH

(A) <= ((RD)
XCHD A, @Ri
Function: Exchange Digit

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3-0), generally representing
a hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by
the specified register. The high-order nibbles (bits 7-4) of each register are not affected. No
flags are affected.

Example: RO contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,

XCHD A, @RO

will leave RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in
the accumulator.

Bytes: 1
Cycles: 1
Encoding: | 1 101 [0 1 1 i

Operation: XCHD
(Aso) <= (Riz)
XRL <dest-byte>, <src-byte>
Function: Logical Exclusive-OR for byte variables

Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables,
storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations.When the destination is the
Accumulator, the source can use register, direct, register-indirect, or immediate addressing;
when the destination is a direct address,the source can be the Accumulator or immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.)

Example: If the Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) then
the instruction,
XRL A, RO
will leave the Accumulator holding the vatue 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinna-
tion of bits in any RAM location or hardware register. The pattern of bits to be complemented
is then determined by a mask byte, either a constant contained in the instruction or a variable
computed in the Accumulator at run-time. The instruction,

XRL P1,#00110001B
will complement bits 5,4 and 0 of outpue Port 1.

136 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

XRL A, Rn
Bytes:
Cycles:
Encoding:

Operation:

XRL A, direct
Bytes:

Cycles:
Encoding:

Operation:

XRL A, @Ri
Bytes:
Cycles:
Encoding:

Operation:

XRL A, #data
Bytes:

Cycles:
Encoding:

Operation:

XRL direct, A
Bytes:

Cycles:
Encoding:

Operation:

1
1
|0110|1rrr

XRL
(A) < (A) A (Rn)

|0110|0101| |directaddress|

XRL
(A) « (A) A (direct)

1
1

[o01 1 0Jou1 1

XRL

(A) — (A) A ((Ri)

2

1

|01 1 0|0100| |immediatedata|
XRL

(A) « (A) A #data

2

1

|01 1 0|00 10 | | direct address
XRL

(direct) «— (direct) A (A)

XRL direct, #dataw

Bytes: 3
Cycles: 2
Encoding: | 01 10 | 0011 | | direct address | | immediate data |
Operation: XRL
(direct) «— (direct) A # data
STC MCU Limited. website: www.STCMCU.com 137

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Chapter 6. Interrupt System

STC12C5A60S2 series support 10 interrupt sources with four priority levels. The 10 interrupt sources are external
interrupt O(W), Timer O interrrupt, external interrupt l(ﬁ), Timer 1 interrrupt, serial port 1(UART1)
interrupt, ADC interrupt, low voltage detection (LVD) interrupt, PCA interrupt, serial port 2(UART?2) interrupt
and SPI interrupt. Each interrupt source has one or more associated interrupt-request flag(s) in SFRs. Associating
with each interrupt vector, the interrupt sources can be individually enabled or disabled by setting or clearing a
bit (interrupt enalbe control bit) in the SFRs IE, CCON and IE2. However, interrupts must first be globally
enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized.
Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable
settings.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-request
flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL
to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must
end with an RETI instruction, which returns program execution to the next instruction that would have
been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-
pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-

pending flag is set to logic 1 regardless of the interrupt’s enable/disable state.)

Each interrupt source has two corresponding bits to represent its priority. One is located in SFR named IPH and
other in IP register. Higher-priority interrupt will be not interrupted by lower-priority interrupt request. If two
interrupt requests of different priority levels are received simultaneously, the request of higher priority is serviced.
If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determine
which request is serviced. The following table shows the internal polling sequence in the same priority level and
the interrupt vector address.

Interrupt Sources, vector address, priority and polling sequence Table

Interrupt Interrupt Pr1.or{ty Interrupt Priority|Priority O] . . Priority|Priority 3| Interrupt Interrupt
Source hesioeihin setting(IPH, IP) | (lowest) Priority 1 2 (highest)| Request BEE .
address | level i Control Bit
External
interrupt 0 | 0003H |O(highest)| PXOH,PX0 0,0 0,1 1,0 1,1 1E0 EX0/EA
(INTO)
Timer 0 | 000BH 1 PTOH,PTO 0,0 0,1 1,0 1,1 TFO ETO/EA
External
interrupt 1| 0013H 2 PX1H,PX1 0,0 0,1 1,0 1,1 IE1 EX1/EA
(INTD
Timerl 001BH 3 PT1H,PTI 0,0 0,1 1,0 1,1 TF1 ETI/EA
Serial Port | 0023H 4 PSH.PS 0,0 0,1 1,0 1,1 RI+TI ES/EA
ADC 002BH 5 PADCH,PADC 0,0 0,1 1,0 1,1 ADC_FLAG| EADC/EA
LVD 0033H 6 PLVDH,PLVD 0,0 0,1 1,0 1,1 LVD ELVD/EA
CF+CCFO0 + | (ECF+ECCF0
PCA | 003BH 7 PPCAH,PPCA 0,0 0,1 1,0 1,1 CCFI (+EC CFIYEA
U?S];)Tz 0043H 8 PS2H,PS2 0,0 0,1 1,0 1,1 S2TI+S2RI | ES2/EA
SPI 004BH | 9(lowest) PSPIH,PSPI 0,0 0,1 1,0 1,1 SPIF ESPI/EA

138 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

In C language program. the interrupt polling sequence number is equal to interrupt number, for example,

void Int0_Routine(void) interrupt 0;
void Timer0_Rountine(void) interrupt 1;
void Intl_Routine(void) interrupt 2;
void Timerl Rountine(void) interrupt 3;
void UART_ Routine(void) interrupt 4;
void ADC Routine(void) interrupt 5;
void LVD_Routine(void) interrupt 6;
void PCA_Routine(void) interrupt 7;
void UART2 Routine(void) interrupt §;
void SPI Routine(void) interrupt 9;

STC MCU Limited. website: www.STCMCU.com 139

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

6.1 Interrupt Structure

The interrupt structure of STC12C5A608S2 series is shown as below.

Interrupt Priority L.
Interrupt Enable Conterol Registers lowest Priority
Conterol Registers v Level Interrupt
* IPIP2. IPHLIP2H Highest Priority
IE, IE2 Register ’ Re;giste;s Level Interrupt
TCON.0/IT0=0 PXOH, PX0
— Exo 2 e oyl
INTO —o— —O/—O/Tc o3 LN
TCON.0/TO=1 PTOH, PTO high
’ 0,0, g
ET0 ! o e SRS [
TFO)I—O/—Jc oS 1,1
|
- > PXIH, PX1
TCON.2/IT1=0 EX1 3 0.0 iyl L
INTT—o IEIH—"—0 oS D
TCON.2/ITI=1 | erngn|_og)
ET1 S W o
TF1) O/T — A o\§ 1o
| PSH,PS | o
o—1—P ol
RI B g N 10
UARTU/ST - :[D—N—O/S —O)(c 0\8 : LI Interrupt
EADC B — ol Polling
ADC FLAG p—o- o 0.3 - 1.1 Sequence
PLVDH, PLVD
ELVD | e s RN [
LVDF Y R oS P
|
CF | PPCAH, PPCA
S [] e
A (e . 1.1
ECCF0—) q 1 oo
CCFl1 I
ECCF1 | PS2H,PS2 | 0
ES2 % oy |
S2RI S :
uART2S2 SIS j o~ of od H L)
| PSPIH, PSPI[
ESPI % ol
SPIF —I—o/—c)/c oS N N
| v
| low
EA:
kGlobal Enable
EA

Figure STC12C5A60S2 series Interrupt Structure diagram

140 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

The External Interrupts INTO and INT1 can each be either level-activated or transition-activated, depending
on bits ITO and IT1 in Register TCON. The flags that actually generate these interrupts are bits IEO and IE1
in TCON. When an external interrupt is generated, the flag that generated it is cleared by the hardware when
the service routine is vectored to if and only if the interrupt was transition —activated, otherwise the external
requesting source is what controls the request flag, rather than the on-chip hardware.

The Timer 0 and Timerl1 Interrupts are generated by TFO and TF1, which are set by a rollover in their respective
Timer/Counter registers in most cases. When a timer interrupt is generated, the flag that generated it is cleared by
the on-chip hardware when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR of RI and TI. Neither of these flags is cleared by
hardware when the service routine is vectored to. In fact, the service routine will normally have to determine
whether it was RI and TI that generated the interrupt, and the bit will have to be cleared by software.

The ADC interrupt is generated by the flag — ADC_FLAG. It should be cleared by software.

The Low Voltage Detect interrupt is generated by the flag — LVDF(PCON.5) in PCON register. It should be
cleared by software.

The PCA interrupt is generated by the logical OR of CF, CCF0 ~ CCF1. The service routine should poll CF and
CCFO ~ CCF1 to determine which one to request service and it will be cleared by software.

The secondary serial port interrupt is generated by the logical OR of S2RI and S2TI. Neither of these flags is
cleared by hardware when the service routine is vectored to. The service routine should poll S2RI and S2TI to
determine which one to request service and it will be cleared by software.

The SPI interrupt is generated by the flag SPIF. It can only be cleared by writing a “1” to SPIF bit in software.
All of the bits that generate interrupts can be set or cleared by software, with the same result as though it had

been set or cleared by hardware. In other words, interrupts can be generated or pending interrupts can be canceled
in software.

STC MCU Limited. website: www.STCMCU.com 141

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

6.2 Interrupt Register

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset

IE Interrupt Enable | AS8H | EA |ELvD|EADC| ES | ETI | EXI | ETO | EX0 |0000 0000B

P |Interrupt Priority Low| B8H | PPCA | PLVD | PADC | s | PT1 | PX1 | PTO | PX0 0000 0000B

IPH Interrl;];t iﬂomy B7H PPCAH‘PLVDH‘PADCH‘ PSH ‘PTIH‘ PXIH ‘ PTOH ‘ PXOH 0000 0000B

12

1E2 Interrupt Enable 2 | AFH -l -1 -1 -1 - | - |&ser| ES2 |xxxxxx00B

P2 2rd Intermpt.Prlorlty BSH - - T - T -T -T - Tpse] ps2 ok xx00B
Low register

IP2H 2rd Interrupt.Prlorlty B6H N | - [psem] ps2n <xxx xx00B
Low register

TCON Timer Control 88H | TF1 | TR1 | TF0 | TRO | 1EI | 1T | 1E0 | 1O {0000 0000B

SCON Serial Control 98H |SMOFE| sM1 | sM2 | REN | TB8 | RB& | TI | RI [0000 0000B

AUXR Auxiliary register SEH T0x12|T1x12|UART7MOx6|BRTRlSZSMOD|BRTx12|EXTRAM|SlBRS 0000 0000B

PCON Power Control 87H |sMoD|smopo | LvDF | POF | GF1 | GFo | PD | IDL [0001 0000B

CLK_Output Power PCAWAKEUP | RXD_PIN_IE | TI_PIN_IE | TO_PIN_IE | LVD_WAKE | BRTCLKO |T1CLKO | TOCLKO

WAKE_CLKO| down Wake-up 8FH 0000 0000B
control register

ADC_CONTR ADC Control BCH ADCJ’OWER|SPEED1|SPEED0|ADC7FLAG| ADC_START |(‘HSZ| CHSI1 | cuso 0000 0000B

CCON PCACpntrol psg LCF [cR | - T - 1 - [- [ccFi]ccro 00xx xx00B

Register

CMOD |PCA Mode Register| DO9H [coL| - | - | [cps2 | cpsi | cpso | ECF |00xx 0000B

CCAPMO PCA Modgle 0 DAH = [EcomMo]cAPPo]cAPNO| MATO | TOGO | PWMO | ECCFO <000 0000B
Mode Register

CCAPMI PCA Modqle 1 DBH I— [EcOM1]CAPPI[CAPNI|MATI1 | TOGI | PWMI1 | ECCFI <000 0000B
Mode Register

SPSTAT | SPI Status register | CDH | spIF |wcor| - | - | [00xx xxxxB

142

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

1. Interrupt Enable control Registers IE and IE2

IE: Interrupt Enable Rsgister (Bit-addressable)

SFR name | Address bit B7 B6 BS B4 B3 B2 Bl BO
IE A8H name EA ELVD | EADC| ES ET1 | EX1 | ETO EX0
Enable Bit = 1 enables the interrupt .
Enable Bit = 0 disables it .
EA (IE.7): disables all interrupts. If EA = 0,no interrupt will be acknowledged. If EA = 1, each interrupt
source is individually enabled or disabled by setting or clearing its enable bit.
ELVD (IE.6): Low volatge detection interrupt enable bit. I[f ELVD = 0, Low voltage detection interrupt will be
diabled. If ELVD = 1, Low voltage detection interrupt is enabled.
EADC (IE.5): ADC interrupt enable bit. If EADC = 0, ADC interrupt will be diabled. If EADC = 1, ADC
interrupt is enabled.
ES (IE.4): Serial Port 1 (UART1) interrupt enable bit. If ES = 0, UART1 interrupt will be diabled. IFES =1,
UARTTI interrupt is enabled.
ET1 (IE.3): Timer 1 interrupt enable bit. If ET1 = 0, Timer 1 interrupt will be diabled. If ET1 = 1, Timer 1
interrupt is enabled.
EX1 (IE.2): External interrupt 1 enable bit. If EX1 = 0, external interrupt 1 will be diabled. If EX1 =1,
external interrupt 1 is enabled.
ETO (IE.1): Timer 0 interrupt enable bit. If ET0 = 0, Timer 0 interrupt will be diabled. If ETO = 1, Timer 0
interrupt is enabled.
EXO (IE.0): External interrupt O enable bit. If EX0 = 0, external interrupt 0 will be diabled. If EX0 =1,

external interrupt 0 is enabled.

IE2: Interrupt Enable 2 Rsgister (Non bit-addressable)

SFR name

Address bit B7 B6 BS B4 B3 B2 B1 BO

IE2

AFH name - - - - - - ESPI ES2

ESPI (IE2.1): SPI interrupt enalbe bit.

If ESPI = 0, SPI interrupt will be diabled.
If ESPI =1, SPI interrupt is enabled.

ES2 (IE.0): Serial Port 2 (UART?2) interrupt enable bit.

If ES2 = 0, UART?2 interrupt will be diabled.
If ES2 = 1, UART?2 interrupt is enabled.

STC MCU Limited. website: www.STCMCU.com 143

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. Interrupt Priority control Registers IP, IP2 and IPH, IP2H

Each interrupt source of STC12C5A608S2 all can be individually programmed to one of four priority levels by
setting or clearing the bits in Special Function Registers IP or IP2 and IPH or IP2H. A low-priority interrupt can
itself be interrupted by a high-pority interrupt, but not by another low-priority interrupt. A high-priority interrupt
can’t be interrupted by any other interrupt source.

IPH: Interrupt Priority High Register (Non bit-addressable)

SFR name | Address bit B7 B6 BS B4 B3 B2 B1 BO
IPH B7H name |PPCAH | PLVDH [PADCH| PSH ([PTIH [PX1H| PTOH | PXOH
IP: Interrupt Priority Register (Bit-addressable)
SFR name | Address bit B7 Bo6 B5 B4 B3 B2 B1 BO
1P B8H name PPCA | PLVD | PADC PS PTI PX1 PTO PX0

PPCAH, PPCA: PCA interrupt priority control bits.
if PPCAH=0 and PPCA=0, PCA interrupt is assigned lowest priority (priority 0).
if PPCAH=0 and PPCA=1, PCA interrupt is assigned lower priority (priority 1).
if PPCAH=1 and PPCA=0, PCA interrupt is assigned higher priority (priority 2).
if PPCAH=1 and PPCA=1, PCA interrupt is assigned highest priority (priority 3).

PLVDH, PLVD: Low voltage detection interrupt priority control bits.
if PLVDH=0 and PLVD=0, Low voltage detection interrupt is assigned lowest priority(priority 0).
if PLVDH=0 and PLVD=1, Low voltage detection interrupt is assigned lower priority(priority 1).
if PLVDH=1 and PLVD=0, Low voltage detection interrupt is assigned higher priority(priority 2).
if PLVDH=1 and PLVD=1,Low voltage detection interrupt is assigned highest priority(priority 3).

PADCH, PADC: ADC interrupt priority control bits.
if PADCH=0 and PADC=0, ADC interrupt is assigned lowest priority (priority 0).
if PADCH=0 and PADC=1, ADC interrupt is assigned lower priority (priority 1).
if PADCH=1 and PADC=0, ADC interrupt is assigned higher priority (priority 2).
if PADCH=1 and PADC=1, ADC interrupt is assigned highest priority (priority 3).
PSH, PS: Serial Port 1 (UART1) interrupt priority control bits.
if PSH=0 and PS=0, UART1 interrupt is assigned lowest priority (priority 0).
if PSH=0 and PS=1, UART1 interrupt is assigned lower priority (priority 1).
if PSH=1 and PS=0, UART1 interrupt is assigned higher priority (priority 2).
if PSH=1 and PS=1, UART1 interrupt is assigned highest priority (priority 3).
PT1H, PT1: Timer 1 interrupt priority control bits.
if PT1H=0 and PT1=0, Timer 1 interrupt is assigned lowest priority (priority 0).
if PT1H=0 and PT1=1, Timer 1 interrupt is assigned lower priority (priority 1).
if PT1H=1 and PT1=0, Timer 1 interrupt is assigned higher priority (priority 2).
if PT1H=1 and PT1=1, Timer 1 interrupt is assigned highest priority (priority 3).
PX1H, PX1: External interrupt 1 priority control bits.
if PX1H=0 and PX1=0, External interrupt 1 is assigned lowest priority (priority 0).
if PX1H=0 and PX1=1, External interrupt 1 is assigned lower priority (priority 1).
if PX1H=1 and PX1=0, External interrupt 1 is assigned higher priority (priority 2).
if PX1H=1 and PX1=1, External interrupt 1 is assigned highest priority (priority 3).

144 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

PTOH, PTO: Timer O interrupt priority control bits.
if PTOH=0 and PT0=0, Timer 0 interrupt is assigned lowest priority (priority 0).
if PTOH=0 and PTO=1, Timer O interrupt is assigned lower priority (priority 1).
if PTOH=1 and PT0=0, Timer O interrupt is assigned higher priority (priority 2).
if PTOH=1 and PTO=1, Timer O interrupt is assigned highest priority (priority 3).
PXOH, PXO0: External interrupt O priority control bits.
if PXOH=0 and PX0=0, External interrupt O is assigned lowest priority (priority 0).
if PXOH=0 and PX0=1, External interrupt 0 is assigned lower priority (priority 1).
if PXOH=1 and PX0=0, External interrupt 0 is assigned higher priority (priority 2).
if PXOH=1 and PX0=1, External interrupt 0 is assigned highest priority (priority 3).

IP2H: Interrupt Priority High Register (Non bit-addressable)
SFR name | Address bit B7 B6 BS B4 B3 B2 B1 BO
IP2H Bo6H name - - - - - - PSPIH | PS2H

IP2: Interrupt Priority Register (Non bit-addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
1P2 B5SH name - - - - - - PSPI PS2

PSPIH, PSPI: SPI interrupt priority control bits.
if PSPIH=0 and PSPI=0, SPI interrupt is assigned lowest priority (priority 0).
if PSPIH=0 and PSPI=1, SPI interrupt is assigned lower priority (priority 1).
if PSPIH=1 and PSPI=0, SPI interrupt is assigned higher priority (priority 2).
if PSPIH=1 and PSPI=1, SPI interrupt is assigned highest priority (priority 3).

PS2H, PS2 : Serial Port 2 (UART?2) interrupt priority control bits.
if PS2H=0 and PS2=0, UART2 interrupt is assigned lowest priority (priority 0).
if PS2H=0 and PS2=1, UART2 interrupt is assigned lower priority (priority 1).
if PS2H=1 and PS2=0, UART2 interrupt is assigned higher priority (priority 2).
if PS2H=1 and PS2=1, UART2 interrupt is assigned highest priority (priority 3).

STC MCU Limited. website: www.STCMCU.com 145

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

3. TCON register: Timer/Counter Control Register (Bit-Addressable)

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO

TCON 88H name | TF1 | TR1 TFO TRO IE1 IT1 IEO 1TO

TF1

: Timer/Counter 1 Overflow Flag. Set by hardware on Timer/Counter 1 overflow. The flag can be cleared by

software but is automatically cleared by hardware when processor vectors to the Timer 1 interrupt routine.
If TF1 =0, No Timer 1 overflow detected.
If TF1 = 1, Timer 1 has overflowed.

TR1: Timer/Counter 1 Run Control bit. Set/cleared by software to turn Timer/Counter on/off.

If TR1 =0, Timer 1 disabled.
If TR1 =1, Timer 1 enabled.

TFO: Timer/Counter 0 Overflow Flag. Set by hardware on Timer/Counter 0 overflow. The flag can be cleared by

software but is automatically cleared by hardware when processor vectors to the Timer 0 interrupt routine.
If TFO = 0, No Timer 0 overflow detected.
If TFO = 1, Timer 0 has overflowed.

TRO: Timer/Counter 0 Run Control bit. Set/cleared by software to turn Timer/Counter on/off.

1E1:

IT1:

IEO:

ITO:

If TRO = 0, Timer 0 disabled.
If TRO = 1, Timer 0 enabled.

External Interrupt 1 Edge flag. Set by hardware when external interrupt edge/level defined by IT1 is
detected. The flag can be cleared by software but is automatically cleared when the external interrupt 1
service routine has been processed.

External Intenupt 1 Type Select bit. Set/cleared by software to specify falling edge/low level triggered ex-
ternal interrupt 1.

IfIT1 =0, INTI is low level triggered.
IfIT1 =1, INT1 is edge triggered.

External Interrupt 0 Edge flag. Set by hardware when external interrupt edge/level defined by ITO is
detected. The flag can be cleared by software but is automatically cleared when the external interrupt 0
service routine has been processed.

External Intenupt 0 Type Select bit. Set/cleared by software to specify falling edge/low level triggered ex-
ternal interrupt 0.

IfITO = 0, INTO is low level triggered.

IfITO = 1, INTO is edge triggered.

146

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

4. SCON register: Serial Port 1 (UART1) Control Register (Bit-Addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO

SCON 98H name | SMO/FE | SM1 | SM2 | REN | TB8 | RB8 TI RI

FE: Framing Error bit. The SMODO bit must be set to enable access to the FE bit

0:
1:

The FE bit is not cleared by valid frames but should be cleared by software.
This bit set by the receiver when an invalid stop bit id detected.

SMO0,SM1 : Serial Port Mode Bit 0/1.

SMO

—_—— O O

SM2 :

REN:

TB8
RBS8
TI

RI :

SM1 Description Baud rate
0 8-bit shift register SYSclk/12
1 8-bit UART variable
0 9-bit UART SYSclk/64 or SYSclk/32(SMOD=1)
1 9-bit UART variable

Enable the automatic address recognition feature in mode 2 and 3. If SM2=1, RI will not be

set unless the received 9th data bit is 1, indicating an address, and the received byte is a

Given or Broadcast address. In model, if SM2=1 then RI will not be set unless a valid stop

Bit was received, and the received byte is a Given or Broadcast address. In mode 0, SM2 should be 0.
When set enables serial reception.

: The 9th data bit which will be transmitted in mode 2 and 3.

: In mode 2 and 3, the received 9th data bit will go into this bit.

Transmit interrupt flag. Set by hardware when a byte of data has been transmitted by UARTO (after the 8th
bit in 8-bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UARTO in-
terrupt is enabled, setting this bit causes the CPU to vector to the UARTO interrupt service routine. This bit
must be cleared manually by software.

Receive interrupt flag. Set to ‘1’ by hardware when a byte of data has been received by UARTO (set at the
STOP bit sam-pling time). When the UARTO interrupt is enabled, setting this bit to ‘1’ causes the CPU to
vector to the UARTO interrupt service routine. This bit must be cleared manually by software.

STC MCU Limited. website: www.STCMCU.com 147

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

5. Register related with LVD interrupt: Power Control register PCON (Non bit-Addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 B1 B0
PCON 87H name | SMOD | SMODO | LVDF | POF GF1 GFO PD IDL

SMOD: double Baud rate control bit.

0 : Disable double Baud rate of the UART.

1 : Enable double Baud rate of the UART in mode 1,2,0r 3.
SMODO: Frame Error select.

0 : SCON.7 is SMO function.

1 : SCON.7 is FE function. Note that FE will be set after a frame error regardless of the state of SMODO.
LVDF : Pin Low-Voltage Flag. Once low voltage condition is detected (VCC power is lower than LVD

voltage), it is set by hardware (and should be cleared by software).

POF : Power-On flag. It is set by power-off-on action and can only cleared by software.
GF1 : General-purposed flag 1
GFO0 : General-purposed flag 0
PD : Power-Down bit.
IDL . Idle mode bit.

IE: Interrupt Enable Rsgister (Bit-addressable)
SFR name | Address bit B7 B6 B5 B4 B3 B2 B1 BO
IE A8H name EA ELVD | EADC| ES ET1 | EX1 | ETO EXO0

EA : disables all interrupts.
If EA = 0,no interrupt will be acknowledged.
If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.

ELVD: Low volatge detection interrupt enable bit.
If ELVD = 0, Low voltage detection interrupt will be diabled.
If ELVD = 1, Low voltage detection interrupt is enabled.

148 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

6. ADC_CONTR: AD Control register (Non bit-Addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 | BI BO
ADC_CONTR BCH name |ADC POWER | SPEEDI [SPEEDO| ADC FLAG |ADC START|CHS2| CHS! | CHSO

ADC_POWER : When clear, shut down the power of ADC bolck. When set, turn on the power of ADC block.
ADC FLAG : ADC interrupt flag.It will be set by the device after the device has finished a conversion, and

should be cleared by the user's software.

ADC STRAT : ADC start bit, which enable ADC conversion.It will automatically cleared by the device after the
device has finished the conversion

IE: Interrupt Enable Rsgister (Bit-addressable)

SFR name | Address bit B7 B6 BS5 B4 B3 B2 B1 BO
IE A8H name EA ELVD | EADC ES ET1 | EXI ETO EXO0

EA : disables all interrupts.

If EA = 0,no interrupt will be acknowledged.
If EA =1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.

EADC: ADC interrupt enable bit.

If EADC = 0, ADC interrupt will be diabled.
If EADC = 1, ADC interrupt is enabled.

STC MCU Limited. website: www.STCMCU.com 149

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

7. Register related with PCA interrupt
CCON: PCA Control Register (bit-Addressable)
SFR name| Address bit B7 B6 B5 B4 B3 B2 B1 BO

CCON D8H name CF CR - - - - CCF1 | CCFo0

CF: PCA Counter Overflow flag. Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF
in CMOD is set. CF may be set by either hardware or software but can only be cleared by software.

CR: PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to
turn the PCA counter off.

CCF1: PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by
software.

CCF0: PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs. Must be cleared by
software.

CMOD: PCA Mode Register (Non bit-Addressable)
SFR name| Address | bit B7 B6 B5 B4 B3 B2 Bl BO
CMOD D9H name CIDL - - - CPS2 CPS1 CPSO ECF

CIDL : Counter Idle control. CIDL=0 programs the PCA Counter to continue functioning during idle mode.
CIDL=1 programs it to be gated off during idle.

CPS2 ~ CPSO : PCA Counter Pulse Select bits.

00 0 Internal clock, fosc/12

0 0 1 Internal clock, fosc/2

01 0 Timer 0 overflow

01 1 External clock at ECI/P1.2 pin
1 0 0 Internal clock, fosc

1 0 1 Internal clock, fosc/4

1 1 0 Internal clock, fosc/6

1 1 1 Internal clock, fsoc/8

ECF : PCA Enable Counter Overflow interrupt. ECF=1 enables CF bit in CCON to generate an interrupt.

CCAPMn register (Non bit-Addressable)

SFR name| Address bit B7 B6 B5 B4 B3 B2 Bl BO
CCAPMO DAH name - ECOMO | CAPPO [CAPNO [MATO | TOGO | PWMO | ECCFO
CCAPM1 DBH name - ECOMI1 | CAPP1 | CAPNI1 | MAT1 TOG1 | PWMI1 | ECCF1

ECOMn : Enable Comparator. ECOMn=1 enables the comparator function.

CAPPn: Capture Positive, CAPPn=1 enables positive edge capture.

CAPNn : Capture Negative, CAPNn=1 enables negative edge capture.

MATn: Match. When MATn=1, a match of the PCA counter with this module’s compare/capture register
causes the CCFn bit in CCON to be set.

TOGn : Toggle. When TOGn=1, a match of the PCA counter with this module’s compare/capture register causes
the CEXn pin to toggle.

PWMn : Pulse Width Modulation. PWMn=1 enables the CEXn pin to be used as a pulse width modulated output.

ECCFn : Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate

150 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

8. Register related with SPI interrupt

SPSTAT: SPI Status Control Register (Non bit-Addressable)

SFR name| Address bit B7 B6 B5 B4 B3 B2 B1 BO
SPSTAT CDH name SPIF WCOL - - - - - -

SPIF : SPI transfer completion flag.When a serial transfer finishes, the SPIF bit is set and an interrupt is gener-
ated if both the ESPI(IE.6) bit and the EA(IE.7) bit are set. If SS is an input and is driven low when SPI
is in master mode with SSIG = 0, SPIF will also be set to signal the “mode change”. The SPIF is cleared
in software by “writing 1 to this bit”.

WCOL: SPI write collision flag. The WCOL bit is set if the SPI data register, SPDAT, is written during a data
transfer. The WCOL flag is cleared in software by “writing 1 to this bit”

IE: Interrupt Enable Rsgister (Bit-addressable)
SFR name | Address bit B7 B6 B5 B4 B3 B2 B1 BO
IE A8H name EA ELVD | EADC ES ET1 | EXI1 ETO EXO0

EA : disables all interrupts.
If EA = 0,no interrupt will be acknowledged.
If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.

IE2: Interrupt Enable 2 Rsgister (Non bit-addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 B1 BO
1E2 AFH name - - - - - - ESPI ES2

ESPI: SPI interrupt enable bit.

If ESPI = 0, SPI interrupt will be diabled.
If ESPI = 1, SPI interrupt is enabled.

STC MCU Limited. website: www.STCMCU.com 151

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

9. Interrupt register related with Power down wake-up: WAKE_CLKO (Non bit-Addressable)

SFR name

Address | bit B7 B6 BS B4 B3 B2 B1 BO

WAKE CLKO

8FH |name|PCAWAKEUP |[RXD PIN IE|T1 PIN IE|TO PIN IE|LVD WAKE|BRTCKLO |TICKLO |TOCKLO

PCAWAKEUP: When set and the associated-PCA interrupt control registers is configured correctly, the CEXn pin

RXD PIN IE:

T1 PIN IE:

TO PIN_IE :

LVD WAKE:

BRTCKLO :

T1CKLO :

TOCKLO :

of PCA function is enabled to wake up MCU from power-down state.

When set and the associated-UART interrupt control registers is configured correctly, the RXD
pin (P3.0) is enabled to wake up MCU from power-down state.

When set and the associated-Timerl interrupt control registers is configured correctly, the T1 pin
(P3.5) is enabled to wake up MCU from power-down state.

When set and the associated-Timer(interrupt control registers is configured correctly, the T1 pin
(P3.4) is enabled to wake up MCU from power-down state.

When set and the associated-LVD interrupt control registers is configured correctly, the CMPIN
pin is enabled to wake up MCU from power-down state.

When set, P1.0 is enabled to be the clock output of Baud-Rate Timer (BRT). The clock rate is
BRG overflow rate divided by 2.

When set, P3.5 is enabled to be the clock output of Timer 1. The clock rate is Timer l1overflow rate
divided by 2.

When set, P3.4 is enabled to be the clock output of Timer 0. The clock rate is Timer Ooverflow rate
divided by 2.

152

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

6.3 Interrupt Priorities

Each interrupt source can also be individually programmed to one of four priority levels by setting or clearing the
bits in Special Function Registers IP or IP2 and IPH or IP2H. A low-priority interrupt can itself be interrupted by
a high-pority interrupt, but not by another low-priority interrupt. A high-priority interrupt can’t be interrupted by
any other interrupt source.

If two requests of different priority levels are received simultaneously, the request of higher priority level
is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence
determines which request is serviced. Thus within each priority level there is a second priority structure
determined by the polling sequence,as follows:

Source Priority Within Level
0. 1EO (highest)
1. TFO
2. IE1
3. TF1
4. RI+TI
5. ADC FLAG
6. LVDF
7. PCA
8. S2RI+S2TI \J
9. SPIF (lowest)

Note that the “priority within level” structure is only used to resolve simultaneous requests of the same prionty
level.

In C language program. the interrupt polling sequence number is equal to interrupt number, for example,

void Int0_Routine(void) interrupt 0;
void Timer0_Rountine(void) interrupt 1;
void Intl_Routine(void) interrupt 2;
void Timerl Rountine(void) interrupt 3;
void UART Routine(void) interrupt 4;
void ADC_Routine(void) interrupt 5;
void LVD_Routine(void) interrupt 6;
void PCA_Routine(void) interrupt 7;
void UART2_ Routine(void) interrupt §;
void SPI Routine(void) interrupt 9;

STC MCU Limited. website: www.STCMCU.com 153

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

6.4 How Interrupts Are Handled

External interrupt pins and other interrupt sources are sampled at the rising edge of each instruction OPcode
fetch cycle. The samples are polled during the next instruction OPcode fetch cycle. If one of the flags was in a set
condition of the first cycle, the second cycle of polling cycles will find it and the interrupt system will generate an
hardware LCALL to the appropriate service routine as long as it is not blocked by any of the following conditions.

Block conditions :

e Aninterrupt of equal or higher priority level is already in progress.

e The current cycle(polling cycle) is not the final cycle in the execution of the instruction in progress.
e The instruction in progress is RETI or any write to the IE, IE2, IP, IP2, IPH and IP2H registers.

e The ISP/IAP activity is in progress.

Any of these four conditions will block the generation of the hardware LCALL to the interrupt service routine.
Condition 2 ensures that the instruction in progress will be completed before vectoring into any service routine.
Condition 3 ensures that if the instruction in progress is RETI or any access to IE, IE2, IP, IP2, IPH or IP2H, then
at least one or more instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with the last clock cycle of each instruction cycle. Note that if an interrupt flag is
active but not being responded to for one of the above conditions, if the flag is not still active when the blocking
condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag
was once active but not being responded to for one of the above conditions, if the flag is not still active when the
blocking condition is removed, the denied interrupt will not be serviced. The interrupt flag was once active but
not serviced is not kept in memory. Every polling cycle is new.

Note that if an interrupt of higher priority level goes active prior to the rising edge of the third machine cycle,
then in accordance with the above rules it will be vectored to during fifth and sixth machine cycle, without any
instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the
appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases
it doesn’t. It never clears the Serial Port flags. This has to be done in the user’s software. It clears an external
interrupt flag (IEO or IE1) only if it was transition-activated. The hardware-generated LCALL pushes the contents
of the Program Counter onto the stack (but it does not save the PSW) and reloads the PC with an address that
depends on the source of the interrupt being vectored to, as shown be low.

154 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Source Vector Address

1IEO 0003H

TFO 000BH

IE1 0013H

TF1 001BH
RI+TI 0023H
ADC FLAG 002BH
LVDF 0033H
PCA 003BH
S2RI+S2TI 0043H
SPIF 004BH

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs
the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and
reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would
have left the interrupt control system thinking an interrupt was still in progress.

6.5 External Interrupts

The external sources can be programmed to be level-activated or transition-activated by clearing or setting bit IT1
or ITO in Register TCON. If ITx = 0, external interrupt X is triggered by a detected low at the INTx pin. If ITx=1,
external interrupt x is edge-triggered. In this mode if successive samples of the INTx pin show a high in one cycle
and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at
least 12 system clocks to ensure sampling. If the external interrupt is transition-activated, the external source has
to hold the request pin high for at least one machine cycle, and then hold it low for at least one machine cycle to
ensure that the transition is seen so that interrupt request flag IEx will be set. [Ex will be automatically cleared by
the CPU when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested
interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is
completed, or else another interrupt will be generated.

STC MCU Limited. website: www.STCMCU.com 155

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

Example: Design an intrusion warning system using interrupts that sounds a 400Hz tone for 1 second (using a
loudspeaker connected to P1.7) whenever a door sensor connected to INTO makes a high-to-low transition.

Assembly Language Solution

ORG 0
LIMP MAIN ;3-byte instruction
LIMP INTOINT ;EXT 0 vector address
ORG 000BH ;Timer 0 vector
LIMP TOINT
ORG 001BH ;Timer 1 vector
LIMP TI1INT
ORG 0030H

MAIN:
SETB ITO ;negative edge activated
MOV TMOD, #I11H ;16-bit timer mode
MOV IE, #81H ;enable EXT 0 only
SIMP § ;now relax

INTOINT:
MOV R7, #20 ;20 ' 5000 us = 1 second
SETB TFO0 ;force timer O interrupt
SETB TF1 ;force timer 1 interrupt
SETB ETO ;begin tone for 1 second
SETB ETI1 ;enable timer interrupts
RETI

TOINT:
CLR TRO ;stop timer
DINZ R7, SKIP ;if not 20th time, exit
CLR ETO ;if 20th, disable tone
CLR ET1 ;disable itself
LIMP EXIT

SKIP:
MOV THO, #HIGH (-50000) ;0.05sec. delay
MOV TLO, #LOW (-5000)
SETB TRO

EXIT:
RETI

TIINT:
CLR TR1
MOV THI, #HIGH (-1250) ;count for 400Hz
MOV TLI1, #LOW (-1250)
CPL P1.7 ;music maestro!
SETB TRI1
RETI
END

156 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

C Language Solution

#include <REG51.H>
sbit outbit = P17,

/* SFR declarations */
/* use variable outbit to refer to P1.7 */

unsigned char R7; /* use 8-bit variable to represent R7 */
main()
{
ITO=1; /* negative edge activated */
TMOD = 0x11; /* 16-bit timer mode */
IE = 0x81; /* enable EXT 0 only */
while(1);
}
void INTOINT(void) interrupt 0
{
R7=20; /* 20 x 5000us = 1 second */
TFO=1; /* force timer O interrupt */
TF1=1; /* force timer 1 interrupt */
ETO=1; /* begin tone for 1 second */
ET1=1; /* enable timer 1 interrupts */
/* timer interrupts will do the work */
}
void TOINT(void) interrupt 1
{
TRO =0; /* stop timer */
R7=R7-1; /* decrement R7 */
if (R7==0) /% if 20" time, */
{
ET0=0; /* disable itself */
ET1=0;
}
else
{
THO = 0x3C; /*0.05 sec. delay */
TLO = 0xBO;
}
}
void TI1INT (void) interrupt 3
{
TRO =0;
TH1 = 0xFB; /* count for 400Hz */
TL1 =0x1E;
outbit = !outbit; /* music maestro! */
TR1=1;
}
STC MCU Limited. website: www.STCMCU.com 157

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

In the above assembly language solution, five distinct sections are the interrupt vector loactions, the main
program, and the three interrupt service routines. All vector loacations contain LIMP instructions to the respective
routines. The main program, starting at code address 0030H, contains only four instructions. SETB 1TO configures
the door sensing interrupt input as negative-edge triggered. MOV TMOD, #11H configures both timers for mode 1,
16-bit timer mode. Only the external 0 interrupt is enabled initially (MOV IE,#81H), so a "door-open" condition
is needed before any interrupt is accepted. Finally, SIMP $ puts the main program in a do-nothing loop.

When a door-open condition is sensed (by a high-to-low transition of INTO0), an external O interrupt is
generated, INTOINT begins by putting the constant 20 in R7, then sets the overflow flags for both timers to force
timer interrupts to occur.

Timer interrupt will only occur, however, if the respective bits are enabled in the IE register. The next two
instructions (SETB ETO0 and SETB ET1) enable timer interrupts. Finally, INTOINT terminates with a RETI to the
main program.

Timer O creates the 1 second timeout, and Timer 1 creates the 400Hz tone. After INTOINT returns to the main
program, timer interrupt are immediately generated (and accepted after one excution of SIMP §). Because of the
fixed polling sequence, the Timer 0 interrupt is serviced first. A 1 second timeout is created by programming 20
repetitions of a 50,000 us timeout. R7 serves as the counter. Nineteen times out of 20, TOINT operates as follows.
First, Timer O is turned off and R7 is decremented. Then, THO/TL is reload with -50,000, the timer is turned back
on, and the interrupt is terminated. On the 20th Timer 0 interrupt, R7 is decremented to 0 (1 second has elapsed).
Both timer interrupts are disabled(CLR ETO0, CLR ET1)and the interrupt is terminated. No further timer interrupts
will be generated until the next "door-open" condition is sensed.

The 400Hz tone is programmed using Timer 1 interrupts, 400Hz requires a period of 1/400 = 2,500 us or
1,250 high-time and 1,250 us low-time. Each timer 1 ISR simply puts -1250 in TH1/TL1, complements the port
bit driving the loudspeaker, then terminates.

158 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

6.6 Response Time

The INTO and INTI1 levels are inverted and latched into the interrupt flags IEO and IE1 at rising edge of every
syetem clock cycle.

The Timer 0 and Timer 1 flags, TFO and TF1, are set after which the timers overflow. The values are then polled
by the circuitry at rising edge of the next system clock cycle.

If a request is active and conditions are right for it to be acknowledged, a hardware subroutine call to the
requested service routine will be the next instruction to be executed. The call itself takes six system clock cycles.
Thus, a minimum of seven complete system clock cycles elapse between activation of an external interrupt
request and the beginning of execution of the first instruction of the service routine.

A longer response time would result if the request is blocked by one of the four previously listed conditions. If an
interrupt of equal or higher priority level is already in progress, the additional wait time obviously depends on the
nature of the other interrupt’s service routine. If the instruction in progress is not in its final cycle, the additional
wait time cannot be more than 3 cycles, since the longest instructions (LCALL) are only 6 cycles long, and if the
instruction in progress is RETI or an access to IE or IP, the additional wait time cannot be more than 5 cycles (a
maximum of one more cycle to complete the instruction in progress, plus 6 cycles to complete the next instruction
if the instruction is LCALL).

Thus, in a single-interrupt system, the response time is always more than 7 cycles and less than 12 cycles.

STC MCU Limited. website: www.STCMCU.com 159

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

6.7 Demo Programs about Interrupts (C and Assembly Programs)

6.7.1 External Interrupt 0 (INT(0) Demo Programs (C and ASM)

1. Demostrate External Interrupt 0 triggered by Falling Edge

C program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Ext0(Falling edge) Demo ----------------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/¥ --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC -~ */
/* */

#include "reg51.h"

//External interruptQ service routine

void exint0() interrupt 0 //INTO, interrupt 0 (location at 0003H)
{
}
void main()
{
ITO=1; //set INTO interrupt type (1:Falling 0:Low level)
EX0=1; //enable INTO interrupt
EA=1; /lopen global interrupt switch
while (1);
}

160 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

Assembly program

i

;/*¥ --- STC MCU International Limited
;/* --- STC 1T Series MCU ExtO(Falling edge) Demo
;/* --- Mobile: (86)13922809991
;/* --- Fax: 86-755-82905966
i/* --- Tel: 86-755-82948412
3/* --- Web: www.STCMCU.com
;/* If you want to use the program or the program referenced in the

;/* article, please specify in which data and procedures from STC

i*

s

;interrupt vector table

ORG 0000H
LIMP MAIN
ORG 0003H
LIMP EXINTO
ORG 0100H
MAIN:
MOV SP, #7FH
SETB ITO
SETB EXO0
SETB EA
SIMP §

s

;External interruptO service routine

EXINTO:
RETI

END

;INTO, interrupt 0 (location at 0003H)

;initial SP

;set INTO interrupt type (1:Falling 0:Low level)
;enable INTO interrupt
;open global interrupt switch

STC MCU Limited.

website:

www.STCMCU.com

161

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. Demostrate the Power-Down Mode waked up by Falling Edge of External Interrupt 0

C program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by INTO Demo ------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the ------ */
/* article, please specify in which data and procedures from STC =~ ------- */
/* */

#include "reg51.h"
#include "intrins.h"

//External interruptQ service routine

void exintO() interrupt 0
{
}
void main()
{
ITO=1,
EX0=1;
EA=1;
while (1)
{
INTO = 1;
while (IINTO0);
nop();
nop();
PCON = 0x02;
nop();
nop();
Pl++;
}
}

//INTO, interrupt 0 (location at 0003H)

//set INTO interrupt type (1:Falling 0:Low level)
//enable INTO interrupt
/lopen global interrupt switch

//ready read INTO port
/Icheck INTO

//IMCU power down

162 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Assembly program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by INTO Demo ------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the ------ */
/* article, please specify in which data and procedures from STC =~ ------- */
/* */

s

;interrupt vector table

ORG 0000H
LIMP MAIN
ORG 0003H ;INTO, interrupt O (location at 0003H)

LIMP EXINTO

ORG 0100H
MAIN:

MOV SP, #TFH ;initial SP

SETB ITO ;set INTO interrupt type (1:Falling 0:Low level)

SETB = EXO0 ;enable INTO interrupt

SETB EA ;open global interrupt switch
LOOP:

SETB INTO ;ready read INTO port

INB INTO, §$;check INTO

NOP

NOP

MOV PCON, #02H ;MCU power down

NOP

NOP

CPL P1.0

SIMP LOOP

s

;External interrupt0 service routine

EXINTO:
RETI

END

STC MCU Limited. website: www.STCMCU.com 163

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

6.7.2 External Interrupt 1 (INT1) Demo Programs (C and ASM)

1. Demostrate External Interrupt 1 triggered by Falling Edge

C program

/* %/
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Ext1(Falling edge) Demo ----------------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* %/

#include "reg51.h"

//External interruptl service routine

void exintl() interrupt 2 //INT1, interrupt 2 (location at 0013H)
{
H
void main()
{
IT1=1; //set INT1 interrupt type (1:Falling only 0:Low level)
EX1=1; /lenable INT1 interrupt
EA=1; /lopen global interrupt switch
while (1);
H

164 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

Assembly program

o

;/*¥ --- STC MCU International Limited
;/* --- STC 1T Series MCU Extl(Falling edge) Demo
;/* --- Mobile: (86)13922809991
;/* --- Fax: 86-755-82905966
3/* --- Tel: 86-755-82948412
/% --- Web: www.STCMCU.com
;/* If you want to use the program or the program referenced in the

;/* article, please specify in which data and procedures from STC

o

s

;interrupt vector table

ORG 0000H
LIMP MAIN
ORG 0013H
LIMP EXINTI
ORG 0100H
MAIN:
MOV SP, #7FH
SETB ITI
SETB EXI
SETB EA
SIMP §

s

;External interruptl service routine

EXINTI:
RETI

END

;INT1, interrupt 2 (location at 0013H)

;initial SP

;set INTT interrupt type (1:Falling 0:Low level)
;enable INT1 interrupt
;open global interrupt switch

STC MCU Limited.

website:

www.STCMCU.com

165

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. Demostrate the Power-Down Mode waked up by Falling Edge of External Interrupt 1

C program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by INT1 Demo ------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the ------ */
/* article, please specify in which data and procedures from STC =~ ------ */
/* */

#include "reg51.h"
#include "intrins.h"

//External interruptQ service routine
void exint1() interrupt 2

{
}
void main()
{
IT1=1,
EX1=1;
EA=1;
while (1)
{
INTL=1;
while (1INT1);
nop();
nop();
PCON = 0x02;
nop();
nop();
Pl++;
}
}

//INT1, interrupt 2 (location at 0013H)

//set INT1 interrupt type (1:Falling 0:Low level)
//lenable INT1 interrupt
//open global interrupt switch

//ready read INT1 port
//check INT1

//IMCU power down

166 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

Assembly program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by INT1 Demo ------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the ------ */
/* article, please specify in which data and procedures from STC ~ ------- */
/* */

s

;interrupt vector table

ORG 0000H
LIMP MAIN
ORG 0013H ;INT1, interrupt 2 (location at 0013H)

LIMP EXINTI1

ORG 0100H
MAIN:

MOV SP#7FH ;initial SP

SETB IT1 ;set INTT interrupt type (1:Falling 0:Low level)

SETB = EXI1 ;enable INT1 interrupt

SETB EA ;open global interrupt switch
LOOP:

SETB INTI1 ;ready read INT1 port

INB INTLS ;check INT1

NOP

NOP

MOV PCON.,#02H ;MCU power down

NOP

NOP

CPL P1.0

SIMP LOOP

;External interruptl service routine

EXINTI:
RETI

END

STC MCU Limited. website: www.STCMCU.com

167

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

6.7.3 Programs of P3.4/TO/INT Interrupt(falling edge) used to wake up PD mode

1. C program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by TO Demo */
/* ---This Interrupt will borrow Timer 0 interrupt request bit TFO and Timer 0 interrupt vector address ----*/
/* ---So Timer 0 function should be disabled when this Interrupt is enabled */
/* ---The enable bit of this Interrupt is TO_PIN IE / WAKE CLKO.4 in WAKE CLKO register ----------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"
#include "intrins.h"

sfr WAKE CLKO = 0x8f;

//External interruptO service routine

void t0int() interrupt 1 //TO interrupt, interrupt 1 (location at 000BH)
{
¥
void main()
{ JES—
WAKE CLKO = 0x10; //enable P3.4/TO/INT falling edge wakeup MCU

//from power-down mode
//TO_PIN_IE (WAKE_CLKO.4) =1

//ETO = 1; //enable TO interrupt
EA=1; //open global interrupt switch
while (1)
{
TO=1; //ready read TO port
while (1T0); /Icheck TO
nop();
nop();
PCON = 0x02; //IMCU power down
nop();
nop();
Pl++;
H

168 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2. Assembly program

/* --- STC MCU International Limited
/* --- STC 1T Series MCU Power-Down wakeup by TO Demo

*/

*/

/* ---This Interrupt will borrow Timer 0 interrupt request bit TFO and Timer 0 interrupt vector address ----*/

/* ---So Timer 0 function should be disabled when this Interrupt is enabled
/* ---The enable bit of this Interrupt is TO_PIN IE / WAKE CLKO.4 in WAKE CLKO register

*/

/* --- Mobile: (86)13922809991
/* --- Fax: 86-755-82905966

/* --- Tel: 86-755-82948412

/* --- Web: www.STCMCU.com

/* If you want to use the program or the program referenced in the
/* article, please specify in which data and procedures from STC

/*

WAKE_CLKO EQU 8FH

s

;interrupt vector table

ORG 0000H
LIMP MAIN
ORG 000BH
LIMP TOINT
ORG 0100H
MAIN:
MOV SP#7FH
MOV WAKE CLKO,
;SETB ETO
SETB EA
LOOP:
SETB TO
JNB TO $
NOP
NOP
MOV PCON, #02H
NOP
NOP
CPL P1.0
SIMP LOOP

s

;TO interrupt service routine

TOINT:
RETI

END

;TO interrupt, interrupt 1 (location at 000BH)

;initial SP
#10H ;enable P3.4/TO/INT falling edge wakeup MCU
;from power-down mode
;TO_PIN_IE (WAKE CLKO.4) =1
;enable TO interrupt
;open global interrupt switch

;ready read TO port
;check TO

;MCU power down

STC MCU Limited.

website: www.STCMCU.com

169

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

6.7.4 Programs of P3.5/T1/INT Interrupt(falling edge) used to wake up PD mode

1. C program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by T1 Demo */
/* ---This Interrupt will borrow Timer 1 interrupt request bit TF1 and Timer 1 interrupt vector address ----*/
/* ---So Timer 1 function should be disabled when this Interrupt is enabled */
/* ---The enable bit of this Interrupt is T1_PIN IE/ WAKE CLKO.5 in WAKE CLKO register ----------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"
#include "intrins.h"

sfr WAKE_CLKO = 0x8f;
//External interrupt0 service routine
void tlint() interrupt 3 //T1 interrupt, interrupt 3 (location at 001BH)
{
H
void main()
{
WAKE_ CLKO = 0x20; //lenable P3.5/T1/INT falling edge wakeup MCU

/from power-down mode
//T1_PIN_IE/WAKE_CLKO.5 =1

//ET1 =1; //enable T1 interrupt
EA=1; //open global interrupt switch
while (1)
{
T1=1; //ready read T1 port
while (1T1); //check T1
nop();
nop();
PCON = 0x02; //IMCU power down
nop();
nop();
Pl++;
H

170 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2. Assembly program

/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by T1 Demo */
/* ---This Interrupt will borrow Timer 1 interrupt request bit TF1 and Timer 1 interrupt vector address ----*/
/* ---So Timer 1 function should be disabled when this Interrupt is enabled */
/* ---The enable bit of this Interrupt is T1 PIN IE/WAKE CLKO.5 in WAKE CLKO register ----------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

WAKE_CLKO EQU 8FH

s

;interrupt vector table

ORG 0000H

LIMP MAIN

ORG 001BH ;T1 interrupt, interrupt 3 (location at 001BH)

LIMP TIINT

ORG 0100H
MAIN:

MOV SP, #7FH ;initial SP

MOV — WAKE CLKO, #20H ;enable P3.5/T1/INT falling edge wakeup MCU

;from power-down mode
;T1_PIN_IE/WAKE CLKO.5=1

;SETB ETI1 ;enable T1 interrupt

SETB EA ;open global interrupt switch
LOOP:

SETB Tl ;ready read T1 port

INB T1, $;check T1

NOP

NOP

MOV PCON, #02H ;MCU power down

NOP

NOP

CPL P1.0

SIMP LOOP

5
;T1 interrupt service routine

T1INT:
RETI

END

STC MCU Limited. website: www.STCMCU.com 171

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

6.7.5 Program of P3.0/RxD/INT Interrupt(falling edge) used to wake up PD mode

1. C program
/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by RxD Demo */
/* ---This Interrupt will borrow RxD interrupt request bit RI and its interrupt vector address ---------------- */
/* ---So UART function should be disabled when this Interrupt is enabled */
/* ---The enable bit of this Interrupt is RXD_PIN_IE / WAKE_CLKO.6 in WAKE_CLKO register -------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */
#include "reg51.h"
#include "intrins.h"
typedef unsigned char BYTE,;
typedef unsigned int WORD;
/*Declare SFR associated with the RxD */
sfr WAKE CLKO = O0x8F;
void uart_isr() interrupt 4 using 1
{

if (RI)

{

RI=0;

H
H
void main()
{

WAKE CLKO = 0x40; //enable P3.0/RxD/INT falling edge wakeup MCU

//from power-down mode
//RxD_PIN_IE (WAKE CLKO.6)=1

ES=1;

EA=1;
172 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
while (1)
{ RXD=1; //ready read RXD port
while ('RXD); //check RXD
nop();
nop();
PCON = 0x02; //IMCU power down
nop();
nop();
P2++;
H
H
2. Assembly program
/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by RxD Demo */
/* ---This Interrupt will borrow RxD interrupt request bit RI and its interrupt vector address ---------------- */
/* ---So UART function should be disabled when this Interrupt is enabled */
/* ---The enable bit of this Interrupt is RXD PIN IE/WAKE CLKO.6 in WAKE CLKO register -------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

;/*Declare SFR associated with the RxD */
WAKE_CLKO EQU 8FH

ORG 0000H
LIMP MAIN
ORG 0023H
UART ISR:
JBC RI, EXIT ;clear RI flag
EXIT:
RETI
STC MCU Limited. website: www.STCMCU.com 173

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412 Fax:86-755-82905966

ORG 0100H
MAIN:
MOV WAKE CLKO, #40H :enable P3.0/RxD/INT falling edge wakeup MCU
;from power-down mode
;RxD_PIN_IE (WAKE CLKO.6) =1
SETB ES
SETB EA
LOOP:
SETB RXD ;ready read RXD port
INB RXD, $§ ;check RXD
NOP
NOP
MOV PCON, #02H ;MCU power down
NOP
NOP
CPL P1.0
SIMP LOOP
END
174 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

6.7.6 Demo Program of Low Voltage Detection Interrupt used to wake up PD mode

1. C program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by LVD (P4.6) Demo ---------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the ---------------- */
/* article, please specify in which data and procedures from STC = --------------—- */
/* */

#include "reg51.h"
#include "intrins.h"

sfr WAKE CLKO = 0x8f;
sfr P4SW = 0xbb;
sbit ELVD = [E"6;

//External interruptO service routine
void lvdint() interrupt 6

//LVD interrupt, interrupt 6 (location at 0033H)

{
PCON &= 0xdf; /lclear LVD flag
H
void main()
{
P4SW &= 0xDbf; //Set P4.6 as LVD function pin
WAKE CLKO = 0x08; //enable LVD signal wakeup MCU from power-down mode
ELVD =1; //lenable LVD interrupt
EA=1; //open global interrupt switch
while (1)
{
while (PCON & 0x20)
{
PCON &= 0xdf; //clear LVD flag
nop();
nop();
nop();
nop();
H
nop();
nop();
PCON = 0x02; //IMCU power down
nop();
nop();
Pl++;
H
!
STC MCU Limited. website: www.STCMCU.com 175

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. Assembly program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by LVD (P4.6) Demo ---------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the ---------------- */
/* article, please specify in which data and procedures from STC =~ ---------------- */
/* */

WAKE_CLKO EQU 8FH

P4SW EQU 0BBH

ELVD BIT 1IE.6
;interrupt vector table

ORG 0000H

LIMP MAIN

ORG 0033H ;LVD interrupt, interrupt 6 (location at 0033H)

LIMP LVDINT

ORG 0100H
MAIN:

MOV SP, #7FH ;initial SP

ANL P4SW, #0BFH ;Set P4.6 as LVD function pin

MOV WAKE CLKO,#08H ;enable LVD signal wakeup MCU from power-down mode

SETB ELVD ;enable LVD interrupt

SETB EA ;open global interrupt switch
LOOP:

ANL PCON, #0DFH ;clear LVD flag

NOP

NOP

NOP

NOP

MOV A, PCON ;check LVD flag

JB ACC.5, LOOP
176 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

NOP

NOP

MOV PCON, #02H ;MCU power down
NOP

NOP

CPL P1.0

SIMP LOOP

s

;T1 interrupt service routine

LVDINT:

ANL PCON, #0DFH ;clear LVD flag
RETI

END

STC MCU Limited. website: www.STCMCU.com 177

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

6.7.7 Program of PCA Interrupt used to wake up Power Down mode

1. C program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by PCA Demo ---------------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* - Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the ------------- */
/* article, please specify in which data and procedures from STC = ------------- */
/* */

#include "reg51.h"
#include "intrins.h"

typedef unsigned char BYTE;
typedef unsigned int WORD;

/*Declare SFR associated with the PCA */

sfr WAKE _CLKO = O0x8F;

sfr CCON = 0xD8§; //PCA control register

sbit CCF0 = CCON"0; //PCA module-0 interrupt flag

sbit CCF1 = CCON"I; //PCA module-1 interrupt flag

sbit CR = CCON"6; //PCA timer run control bit

sbit CF = CCON"T7, //PCA timer overflow flag

sfr CMOD = 0xD9; //PCA mode register

sfr CL = 0xE9; //PCA base timer LOW

sfr CH = 0xF9; //PCA base timer HIGH

sfr CCAPMO= 0xDA; //PCA module-0 mode register

sfr CCAPOL = OxEA; //PCA module-0 capture register LOW
sfr CCAPOH= O0xFA; //PCA module-0 capture register HIGH
sfr CCAPMI1= 0xDB; //PCA module-1 mode register

sfr CCAPIL = OxEB; //PCA module-1 capture register LOW
sfr CCAPIH= O0xFB; //PCA module-1 capture register HIGH
sfr CCAPM2= 0xDC; //PCA module-2 mode register

sfr CCAP2L = 0xEC; //PCA module-2 capture register LOW
sfr CCAP2H= O0xFC; //PCA module-2 capture register HIGH
sfr CCAPM3= 0xDD; //PCA module-3 mode register

sfr CCAP3L = OxED; //PCA module-3 capture register LOW
sfr CCAP3H = O0xFD; //PCA module-3 capture register HIGH
sfr PCAPWMO = O0xF2;

sfr PCAPWMI1 = O0xF3;

sfr PCAPWM2 = O0xF4;

sfr PCAPWM3 = O0xF5;

178 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

sbit PCA_LED = PI"0; //PCA test LED
sbit CCPO = PI"3;

void PCA_isr() interrupt 7 using 1

{
CCF0 = 0; //Clear interrupt flag
PCA_LED =!PCA_LED; /ltoggle the test pin while CCPO(P1.3) have a falling edge
H
void main()
{
CCON = 0; //Initial PCA control register
//PCA timer stop running
//Clear CF flag
//Clear all module interrupt flag
CL=0; //Reset PCA base timer
CH=0;
CMOD = 0x00; //Set PCA timer clock source as Fosc/12
//Disable PCA timer overflow interrupt
CCAPMO = 0x11; //PCA module-0 capture by a negative tigger on CCPO(P1.3)
//and enable PCA interrupt
// CCAPMO = 0x21; //PCA module-0 capture by a rising edge on CCPO(P1.3)
//and enable PCA interrupt
// CCAPMO = 0x31; //PCA module-0 capture by a transition (falling/rising edge)
//lon CCPO(P1.3) and enable PCA interrupt
WAKE CLKO = 0x80; //lenable PCA falling/raising edge wakeup MCU from power-down mode
CR=1; //PCA timer start run
EA=1;
while (1)
{
CCPO=1; //ready read CCPO port
while (!CCPO); //check CCPO
nop();
nop();
PCON = 0x02; //IMCU power down
nop();
nop();
P2++;
H
H

STC MCU Limited. website: www.STCMCU.com 179

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2 Assembly program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU Power-Down wakeup by PCA Demo ---------------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the ------------- */
/* article, please specify in which data and procedures from STC =~ ------------- */
/* */

;/¥*Declare SFR associated with the PCA */
WAKE CLKO EQU 8FH

CCON EQU 0D8H ;PCA control register

CCFO0 BIT CCON.O ;PCA module-0 interrupt flag

CCF1 BIT CCON.1 ;PCA module-1 interrupt flag

CR BIT CCON.6 ;PCA timer run control bit

CF BIT CCON.7 ;PCA timer overflow flag

CMOD EQU 0D9H ;PCA mode register

CL EQU 0E9H ;PCA base timer LOW

CH EQU 0F9H ;PCA base timer HIGH

CCAPMO EQU ODAH ;PCA module-0 mode register
CCAPOL EQU OEAH ;PCA module-0 capture register LOW
CCAPOH EQU OFAH ;PCA module-0 capture register HIGH
CCAPMI1 EQU ODBH ;PCA module-1 mode register
CCAPIL EQU OEBH ;PCA module-1 capture register LOW
CCAPIH EQU OFBH ;PCA module-1 capture register HIGH
CCAPM2 EQU 0DCH ;PCA module-2 mode register
CCAP2L EQU OECH ;PCA module-2 capture register LOW
CCAP2H EQU OFCH ;PCA module-2 capture register HIGH
CCAPM3 EQU ODDH ;PCA module-3 mode register
CCAP3L EQU OEDH ;PCA module-3 capture register LOW
CCAP3H EQU OFDH ;PCA module-3 capture register HIGH
PCA LED BIT P1.1 ;PCA test LED

CCPO BIT P1.3

180 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

s

ORG 0000H
LIMP MAIN
ORG 003BH
PCA_ISR:
CLR CCFO0 ;Clear interrupt flag
CPL PCA_LED ;toggle the test pin while CCPO(P1.3) have a falling edge
RETI
ORG 0100H
MAIN:
MOV CCON, #0 ;Initial PCA control register
;PCA timer stop running
;Clear CF flag
;Clear all module interrupt flag
CLR A ;
MOV CL, A ;Reset PCA base timer
MOV CH, A ;
MOV CMOD, #00H ;Set PCA timer clock source as Fosc/12
;Disable PCA timer overflow interrupt
MOV CCAPMO, #11H ;PCA module-0 capture by a falling edge on CCPO(P1.3)
;and enable PCA interrupt
; MOV CCAPMO, #21H ;PCA module-0 capture by a rising edge on CCPO(P1.3)
;and enable PCA interrupt
; MOV = CCAPMO, #31H ;PCA module-0 capture by a transition (falling/rising edge)
;on CCPO(P1.3) and enable PCA interrupt
MOV WAKE CLKO, #80H ;enable PCA falling/raising edge wakeup MCU from
;power-down mode
SETB CR ;PCA timer start run
SETB EA
LOOP:
SETB CCPO ;ready read CCPO port
INB CCPO, §$;check CCPO
NOP
NOP
MOV PCON, #02H ;MCU power down
NOP
NOP
CPL P1.0
SIMP LOOP
END
STC MCU Limited. website: www.STCMCU.com 181

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Chapter 7. Timer/Counter 0/1

Timer 0 and timer 1 are like the ones in the conventional 8051, both of them can be individually configured as
timers or event counters.

In the “Timer” function, the register is incremented every 12 system clocks or every system clock depending on
AUXR.7(T0x12) bit and AUXR.6(T1x12). In the default state, it is fully the same as the conventional 8051. In
the x12 mode, the count rate equals to the system clock.

In the “Counter” function, the register is incremented in response to a 1-to-0 transition at its corresponding
external input pin, TO or T1. In this function, the external input is sampled once at the positive edge of every clock
cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new
count value appears in the register during at the end of the cycle following the one in which the transition was
detected. Since it takes 2 machine cycles (24 system clocks) to recognize a 1-to-0 transition, the maximum count
rate is 1/24 of the system clock. There are no restrictions on the duty cycle of the external input signal, but to
ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine
cycle.

In addition to the “Timer” or “Counter” selection, Timer 0 and Timer 1 have four operating modes from which

to select. The “Timer” or “Counter” function is selected by control bits C/T in the Special Function Register
TMOD. These two Timer/Counter have four operating modes, which are selected by bit-pairs (M1, M0) in
TMOD. Modes 0, 1, and 2 are the same for both Timer/Counters. Mode 3 is different.The four operating modes
are described in the following text.

7.1 Special Function Registers about Timer/Counter

Value after

Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
TCON Timer Control 88H | TF1 | TRl | TFO | TRO | IE1 | ITI | 1EO | 1TO | 0000 0000B
TMOD Timer Mode 89H |GATE| oT | M1 | Mo |GATE| ¢/ | M1 | Mo | 0000 0000B
TLO Timer Low 0 8AH 0000 0000B
TL1 Timer Low 1 8§BH 0000 0000B
THO Timer High 0 8CH 0000 0000B
TH1 Timer High 1 8DH 0000 0000B
AUXR | Auxiliary register | SEH | ToxI2|Tix12|UART Mox6|BRTR |s25MOD | BRTx12 |[EXTRAM|S1BRS | 0000 0000B
CLK_Output PCAWAKEUP | RXD_PIN_IE | TI_PIN_IE | TO_PIN_IE | LVD_WAKE |BRT(TLKO |T1CLKO | TOCLKO
WAKE_CLKo| Powerdown - gpy 0000 0000B
Wake-up control
register

182 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

1. TCON register: Timer/Counter Control Register (Bit-Addressable)

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
TCON 88H name | TF1 | TRI1 TFO TRO 1IE1 IT1 1IEO 1TO

TF1: Timer/Counter 1 Overflow Flag. Set by hardware on Timer/Counter 1 overflow. The flag can be cleared by
software but is automatically cleared by hardware when processor vectors to the Timer 1 interrupt routine.
If TF1 =0, No Timer 1 overflow detected.
If TF1 = 1, Timer 1 has overflowed.

TR1: Timer/Counter 1 Run Control bit. Set/cleared by software to turn Timer/Counter on/off.
If TR1 =0, Timer 1 disabled.
If TR1 =1, Timer 1 enabled.

TFO: Timer/Counter 0 Overflow Flag. Set by hardware on Timer/Counter 0 overflow. The flag can be cleared by
software but is automatically cleared by hardware when processor vectors to the Timer 0 interrupt routine.
If TFO = 0, No Timer 0 overflow detected.
If TFO = 1, Timer 0 has overflowed.

TRO: Timer/Counter 0 Run Control bit. Set/cleared by software to turn Timer/Counter on/off.
If TRO = 0, Timer 0 disabled.
If TRO = 1, Timer 0 enabled.

IE1: External Interrupt 1 Edge flag. Set by hardware when external interrupt edge/level defined by IT1 is
detected. The flag can be cleared by software but is automatically cleared when the external interrupt 1
service routine has been processed.

IT1: External Intenupt 1 Type Select bit. Set/cleared by software to specify falling edge/low level triggered ex-
ternal interrupt 1.

IfIT1 =0, INTI is low level triggered.

IfIT1 =1, INT1 is edge triggered.

IEO: External Interrupt 0 Edge flag. Set by hardware when external interrupt edge/level defined by ITO is
detected. The flag can be cleared by software but is automatically cleared when the external interrupt 0
service routine has been processed.

ITO: External Intenupt 0 Type Select bit. Set/cleared by software to specify falling edge/low level triggered ex-
ternal interrupt 0.

IfITO = 0, INTO is low level triggered.
IfITO = 1, INTO is edge triggered.

STC MCU Limited. website: www.STCMCU.com 183

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. TMOD register: Timer/Counter Mode Register

TMOD address: 89H (Non bit-addressable)
(MSB) (LSB)
|Gate| o | M1 | Mo [GatE| o | M1 | wmo

Timer 1 Timer 0
GATR/TMOD.7: Timer/Counter Gate Control.
If GATE/TMOD.7=0,Timer/Counter 1 enabled when TR1 is set irrespective of INT1 logic level;
If GATE/TMOD.7=1, Timer/Counter 1 enabled only when TR1 is set AND INTIL pin is high.
C/T/TMOD.6: Timer/Counter 1 Select bit.
If C/T/TMOD.6=0, Timer/Counter 1 is set for Timer operation (input from internal system clock);
If C/T/TMOD.6=0, Timer/Counter 1 is set for Counter operation (input from external T1 pin).
M1/TMOD.5 ~ M0/TMOD.4: Timer 1 Mode Select bits.

M1 Mo Operating Mode
0 0 Mode 0: 13-bit Timer/Counter for Timer 1
0 1 Mode 1: 16-bit Timer/Counter. THland TL1 are cascaded; there is no prescaler.

Mode 2: 8-bit auto-reload Timer/Counter. TH1 holds a value which is to be reloaded into TL1
each time it overflows.

1 1 Timer/Counter 1 stopped

GATR/TMOD.3: Timer/Counter Gate Control.
If GATE/TMOD.3=0,Timer/Counter 0 enabled when TRO is set irrespective of INTO logic level;
If GATE/TMOD.3=1, Timer/Counter 0 enabled only when TRO is set AND INTO pin is high.
C/T/TMOD.2: Timer/Counter 0 Select bit.
If C/T/TMOD.2=0, Timer/Counter 0 is set for Timer operation (input from internal system clock);
If C/T/TMOD.2=0, Timer/Counter 0 is set for Counter operation (input from external TO pin).
M1/TMOD.1 ~ M0/TMOD.0: Timer 0 Mode Select bits.
M1 MO Operating Mode
0 Mode 0: 13-bit Timer/Counter for Timer 0
Mode 1: 16-bit Timer/Counter. THO and TLO are cascaded; there is no prescaler.
Mode 2: 8-bit auto-reload Timer/Counter. THO holds a value which is to be reloaded
into TLO each time it overflows.
Mode3: TLO is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits
THO is an 8-bit timer only controlled by Timer 1 control bits.

1

184 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

3. AUXR: Auxiliary register (Non bit-addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
AUXR S8EH name |TOx12|T1x12| UART MOx6 |[BRTR|S2SMOD| BRTx12 [EXTRAM|S1BRS

TO0x12 : Timer 0 clock source bit.

0 : The clock source of Timer 0 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 0 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
T1x12 : Timer 1 clock source bit.

0 : The clock source of Timer 1 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 1 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
UART_MOx6 : Baud rate select bit of UART1 while it is working under Mode-0

0 : The baud-rate of UART in mode 0 is SYSclk/12.

1 : The baud-rate of UART in mode 0 is SYSclk/2.
BRTR : Dedicated Baud-Rate Timer run control bit.

0 : The baud-rate generator is stopped.

1 : The baud-rate generator is enabled.
S2SMOD : the baud-rate of UART2 double contol bit.

0 : Default. The baud-rate of UART2 (S2) is not doubled.

1 : The baud-rate UART?2 (S2) is doubled.
BRTx12 : Dedicated Baud-Rate Timer counter control bit.

0 : The baud-rate generator is incremented every 12 system clocks.

1 : The baud-rate generator is incremented every system clock.

EXTRAM : Internal / external RAM access control bit.
0 : On-chip auxiliary RAM is enabled and located at the address 0x0000 to 0x03FF.
For address over 0x03FF, off-chip expanded RAM becomes the target automatically.
1 : On-chip auxiliary RAM is always disabled.
S1BRS : the baud-rate generator of UART1 select bit.
0 : Default. Select Timer 1 as the baud-rate generator of UART1
1 : Timer 1 is replaced by the independent baud-rate generator which is selected as the baud-rate of UART. In
other words, timer 1 is released to use in other functions.

STC MCU Limited. website: www.STCMCU.com 185

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

4. WAKE_CLKO: CLK_Output Power down Wake-up control register (Non bit-Addressable)

SFR name

Address| bit B7 B6 BS B4 B3 B2 Bl BO

WAKE_CLKO

8FH |name|PCAWAKEUP|RXD_PIN_IE |TI_PIN_IE[TO0 PIN_IE [LVD_WAKE |BRTCLKO|TI1CLKO|TOCLKO

PCAWAKEUP: When set and the associated-PCA interrupt control registers is configured correctly, the CEXn pin

RXD PIN_IE:

T1_PIN_IE:

TO PIN IE :

LVD_ WAKE:

BRTCKLO :

T1CKLO :

TOCKLO :

of PCA function is enabled to wake up MCU from power-down state.

When set and the associated-UART interrupt control registers is configured correctly, the RXD
pin (P3.0) is enabled to wake up MCU from power-down state.

When set and the associated-Timer] interrupt control registers is configured correctly, the T1 pin
(P3.5) is enabled to wake up MCU from power-down state.

When set and the associated-Timer0 interrupt control registers is configured correctly, the T1 pin
(P3.4) is enabled to wake up MCU from power-down state.

When set and the associated-LVD interrupt control registers is configured correctly, the CMPIN
pin is enabled to wake up MCU from power-down state.

When set, P1.0 is enabled to be the clock output of Baud-Rate Timer (BRT). The clock rate is
BRG overflow rate divided by 2.

When set, P3.5 is enabled to be the clock output of Timer 1. The clock rate is Timer 1overflow rate
divided by 2.

When set, P3.4 is enabled to be the clock output of Timer 0. The clock rate is Timer Ooverflow rate
divided by 2.

186

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

7.2 Timer/Counter () Mode of Operation (Compatible with traditional 8051 MCU)

Timer/Counter 0 can be configured for four modes by setting M1(TMOD.1) and MO(TMOD.0) in sepcial function
register TMOD.

7.2.1 Mode 0 (13-bit Timer/Counter)

Mode 0

In this mode, the timer 0 is configured as a 13-bit timer/counter. As the count rolls over from all 1s to all Os, it sets
the timer interrupt flag TFO. The counted input is enabled to the timer when TRO = 1 and either GATE=0 or TNT(
= 1.(Setting GATE = 1 allows the Timer to be controlled by external input [NT(, to facilitate pulse width mea-
surements.) TRO is a control bit in the Special Function Register TCON. GATE is in TMOD.

The 13-Bit register consists of all 8 bits of THO and the lower 5 bits of TLO. The upper 3 bits of TLO are
indeterminate and should be ignored. Setting the run flag (TRO) does not clear the registers.

There are two different GATE bits. one for Timer 1 (TMOD.7) and one for Timer 0 (TMOD.3).

SYSclk

TLO THO | > » Int t
(5 Bits)| (8 bits TFO erup

control

Timer/Counter 0 Mode 0: 13-Bit Timer/Counter

STC MCU Limited. website: www.STCMCU.com 187

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

7.2.2 Mode 1 (16-bit Timer/Counter) and Demo Programs (C and ASM)

In this mode, the timer register is configured as a 16-bit register. As the count rolls over from all Is to all Os, it
sets the timer interrupt flag TFO. The counted input is enabled to the timer when TRO = 1 and either GATE=0 or

INTO = 1.(Setting GATE = 1 allows the Timer to be controlled by external input [NT(, to facilitate pulse width
measurements.) TRO is a control bit in the Special Function Register TCON. GATE is in TMOD.

The 16-Bit register consists of all 8 bits of THO and the lower 8 bits of TLO. Setting the run flag (TRO) does not
clear the registers.

Mode 1 is the same as Mode 0, except that the timer register is being run with all 16 bits.

AUXR.7/T0x12=0

AUXR.7/T0x12=1

TO Pin 4+

TRO

SYSclk

TLO | THO
@ Bits)| (8 bits]l | TEO [Interrupt

control

GATE

INTO

Timer/Counter 0 Mode 1 : 16-Bit Timer/Counter

There are two simple programs that demostrates Timer 0 as 16-bit Timer/Counter, one written in C language
while other in Assembly language.

C Program:

/* */
/* --—- STC MCU International Limited */
/* --- STC 1T Series 16-bit Timer Demo */
/* --- Mobile: (86)13922809991 */
/* —-- Fax: 86-755-82905966 */
/* —-- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"

typedef unsigned char BYTE;
typedef unsigned int WORD;

//
/* define constants */

#define FOSC 18432000L

#define MODE1T //Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

188 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

#ifdet MODEI1T

#define TIMS (65536-FOSC/1000)

#else

//1ms timer calculation method in 1T mode

#define TIMS (65536-FOSC/12/1000) //1ms timer calculation method in 12T mode

#endif

/* define SFR */
sfr AUXR
sbit TEST LED

/* define variables */
WORD count;

/1

/* Timer0 interrupt routine */

void tm0 _isr() interrupt 1 using 1

{
TLO =TIMS;
THO = TIMS >>8;
if (count-- == 0)
{
count = 1000;
TEST LED =! TEST LED
}
}
I/

/* main program */
void main()

//Auxiliary register

/lwork LED, flash once per second

//1000 times counter

//reload timer0 low byte
//reload timer0 high byte
//1ms * 1000 -> 1s

//reset counter
//work LED flash

{

#ifdef MODEIT
AUXR = 0x80; //timer0 work in 1T mode

#endif
TMOD = 0x01; //set timer0 as model (16-bit)
TLO =TIMS; //initial timer0 low byte
THO =TIMS >>3§; //initial timer0 high byte
TRO=1; /timer0 start running
ETO=1; //enable timer0 interrupt
EA=1; //open global interrupt switch
count = 0; //initial counter
while (1); //loop

H

STC MCU Limited. website: www.STCMCU.com 189

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

Assembly Program:
i*

*/

;/* -—- STC MCU International Limited
/¥ -—- STC 1T Series 16-bit Timer Demo
;/* --- Mobile: (86)13922809991
;/* --- Fax: 86-755-82905966
;/* --- Tel: 86-755-82948412
/¥ --- Web: www.STCMCU.com

*/
*/

*/

*/

*/

*/

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC ~ */

i

*/

;/* define constants */

;Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

;1ms timer calculation method in 1T mode is (65536-18432000/1000)

;1ms timer calculation method in 12T mode is (65536-18432000/12/1000)

#define MODEIT
#ifdef MODEIT
TIMS EQU 0B800H
felse
TIMS EQU 0FAOOH
#endif
;/* define SFR */
AUXR DATA 8EH
TEST LED BIT P1.0
;/* define variables */
COUNT DATA 20H
ORG 0000H
LIMP MAIN
ORG 000BH

LIMP TMO ISR

;/* main program */
MAIN:

#LOW TIMS
#HIGH T1IMS

#ifdef MODEIT

MOV AUXR, #80H
#endif

MOV TMOD, #01H

MOV TLO,

MOV THO,

SETB TRO

SETB ETO

SETB EA

CLR A

MOV COUNT, A
MOV COUNT+I, A

SIMP §

;Auxiliary register

;work LED, flash once per second

;1000 times counter (2 bytes)

;timer0 work in 1T mode

;set timer(O as model (16-bit)

;initial timer(low byte
;initial timer0 high byte
;timer0 start running

;enable timer(interrupt

;open global interrupt switch

;initial counter

190 STC MCU Limited.

website:

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

s

;/* TimerO interrupt routine */

TMO_ISR:
PUSH ACC
PUSH PSW
MOV TLO, #LOW TIMS ;reload timer0 low byte
MOV THO, #HIGH T1MS ;reload timerO high byte
MOV A, COUNT
ORL A, COUNT+I ;check whether count(2byte) is equal to 0
INZ SKIP
MOV COUNT, #LOW 1000 ;1ms * 1000 -> 1s
MOV COUNT+1,#HIGH 1000
CPL TEST_LED ;work LED flash
SKIP:
CLR C
MOV A, COUNT ;count--
SUBB A, #1
MOV COUNT, A
MOV A, COUNT+1
SUBB A, #0
MOV COUNT+1,A
POP PSW
POP ACC
RETI
END

STC MCU Limited. website: www.STCMCU.com 191

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

7.2.3 Mode 2 (8-bit Auto-Reload Mode) and Demo Programs (C and Assembly Program)

Mode 2 configures the timer register as an 8-bit counter(TLO) with automatic reload. Overflow from TLO not
only set TFO, but also reload TLO with the content of THO, which is preset by software. The reload leaves THO
unchanged.

TFO Interrupt
Toggle
CLKOUTO
P3.4
s TOCLKO
(8 Bits)

Timer/Counter 0 Mode 2: 8-Bit Auto-Reload

STCI12C5A60S2 is able to generate a programmable clock output on P3.4. When TOCLKO/
WAKE_ CLKO.0 bit in WAKE_CLKO SEFR is set, TO timer overflow pulse will toggle P3.4 latch to
generate a 50% duty clock. The frequency of clock-out = TO overflow rate/2.
If C/T(TMOD.2) = 0, Timer/Counter 0 is set for Timer operation (input from internal system clock), the
Frequency of clock-out is as following :
(SYSclk) / (256 — THO) / 2, when AUXR.7 / TOx12=1
or (SYSclk/12)/(256—-THO0)/2, when AUXR.7 / TOx12=0

If C/T(TMOD.2) = 1, Timer/Counter 0 is set for Conter operation (input from external P3.4/T0 pin), the

Frequency of clock-out is as following :
T0_Pin_CLK/ (256-THO0) / 2

192 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

;TO Interrupt (falling edge) Demo programs, where TO operated in Mode 2 (8-bit auto-relaod mode)
; The Timer Interrupt can not wake up MCU from Power-Down mode in the following programs

1. C program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU TO (Falling edge) Demo ----------====-=-=--- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */

/* -—- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the --*/
/* article, please specify in which data and procedures from STC ---*/
/* */

#include "reg51.h"
sfr AUXR = 0x8e; //Auxiliary register

//TO interrupt service routine

void t0int() interrupt 1 //TO interrupt (location at 000BH)
{
¥
void main()
{
AUXR = 0x80; //timer0 work in 1T mode
TMOD = 0x06; //set timer(as counter mode2 (8-bit auto-reload)
TLO = THO = 0xff; //fill with Oxff to count one time
TRO=1; //timer0 start run
ETO=1; //enable TO interrupt
EA=1; //open global interrupt switch
while (1);
¥

STC MCU Limited. website: www.STCMCU.com 193

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

2. Assembly program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU TO(Falling edge) Demo ------------------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* - Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* 1f you want to use the program or the program referenced in the */

/* article, please specify in which data and procedures from STC */

/*

*/

AUXR DATA 08EH

s

;interrupt vector table

ORG 0000H

LIMP MAIN

ORG 000BH

LIMP TOINT

ORG 0100H

MAIN:

MOV SP, #7FH
MOV AUXR, #80H
MOV TMOD, #06H
MOV A, #OFFH

MOV TLO, A
MOV THO, A

SETB TRO
SETB ETO
SETB EA

SIMP §

5
;TO interrupt service routine

TOINT:
RETI

END

;Auxiliary register

;TO interrupt (location at 000BH)

;initial SP

;timer0 work in 1T mode
;set timer(as counter mode?2 (8-bit auto-reload)

;fill with Oxff to count one time

;timer0 start run
;enable TO interrupt

;open global interrupt switch

194 STC MCU Limited.

website:

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

7.2.4 Mode 3 (Two 8-bit Timers/Couters)

Timer 1 in Mode 3 simply holds its count, the effect is the same as setting TR1 = 0. Timer 0 in Mode 3 established
TLO and THO as two separate 8-bit counters. TLO use the Timer 0 control bits: C/T. ,GATE,TRO, INTO and TFO.
THO is locked into a timer function (counting machine cycles) and takes over the use of TR1 from Tmer 1. Thus,
THO now controls the “Timer 1” interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer or counter. When Timer 0 is in Mode 3, Timer 1
can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a
baud rate generator, or in fact, in any application not requiring an interrupt.

=12 AUXR.7/T0x12=0

AUXR.7/T0x12=1 T

C/T=0

O— X Interrupt
C/T=1
T0 Pin _ 4

SYSclk

XR.7/TOx 12=0
L THO TF1
\O—E (8 Bits) — Interrupt

AUXR.7/T0x12=0 control
TR1

SYSclk

Timer/Counter 0 Mode 3: Two 8-Bit Timers/Counters

STC MCU Limited. website: www.STCMCU.com 195

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

7.3 Timer/Counter 1 Mode of Operation

Timer/Counter 1 can be configured for three modes by setting M1(TMOD.5) and MO(TMOD.4) in sepcial
function register TMOD.

7.3.1 Mode 0 (13-bit Timer/Counter)

In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all s to all Os, it
sets the timer interrupt flag TF1. The counted input is enabled to the timer when TR1 = 1 and either GATE=0 or
INT1= 1.(Setting GATE = 1 allows the Timer to be controlled by external input INT], to facilitate pulse width
measurements.) TRO is a control bit in the Special Function Register TCON. GATE is in TMOD.

The 13-Bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 are
indeterminate and should be ignored. Setting the run flag (TR1) does not clear the registers.

AUXR.6/T1x12=0

SYSclk

AUXR.6/T1x12=1

T1 Pin 4

TR1

TLI1 TH1
s Bits) (8 b&J_>| TF1 |—> Interrupt

GATE

INT1

Timer/Counter 1 Mode 0: 13-Bit Timer/Counter

196 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

7.3.2 Mode 1 (16-bit Timer/Counter) and Demo Programs (C and ASM)

In this mode, the timer register is configured as a 16-bit register. As the count rolls over from all 1s to all Os, it
sets the timer interrupt flag TF1. The counted input is enabled to the timer when TR1 = 1 and either GATE=0 or
INTI = 1.(Setting GATE = 1 allows the Timer to be controlled by external input INTI, to facilitate pulse width
measurements.) TRI is a control bit in the Special Function Register TCON. GATE is in TMOD.

The 16-Bit register consists of all 8 bits of THI and the lower 8 bits of TL1. Setting the run flag (TR1) does not
clear the registers.

Mode 1 is the same as Mode 0, except that the timer register is being run with all 16 bits.

AUXR.6/T1x12=0

SYSclk J\ 0
AUXR.6/T1x12=1

C/T=0

Interrupt

Timer/Counter 1 Mode 1 : 16-Bit Timer/Counter

There are another two simple programs that demostrates Timer 1 as 16-bit Timer/Counter, one written in C
language while other in Assembly language.

1. C Program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series 16-bit Timer Demo */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"

typedef unsigned char BYTE;
typedef unsigned int WORD;

STC MCU Limited. website: www.STCMCU.com 197

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
/1

/* define constants */
#define FOSC 18432000L

#define MODEIT //Timer clock mode, comment this line is 12T mode, uncomment is 1T mode
#ifdef MODEIT

#define TIMS (65536-FOSC/1000) //1ms timer calculation method in 1T mode

#else

#define TIMS (65536-FOSC/12/1000) //1ms timer calculation method in 12T mode

#endif

/* define SFR */
sfr AUXR = 0x8e; //Auxiliary register
sbit TEST LED = P0"0; /Iwork LED, flash once per second

/* define variables */
WORD count; //1000 times counter

/1

/* Timer(interrupt routine */
void tm1_isr() interrupt 3 using 1

{
TL1 =TIMS; //reload timerl low byte
TH1 =T1IMS >> §; //reload timer1 high byte
if (count-- == 0) //[1ms * 1000 > 1s
{
count = 1000; //reset counter
TEST LED=!TEST LED; //work LED flash
H
H
/

/* main program */
void main()

{

#ifdef MODEIT
AUXR = 0x40; /timer] work in 1T mode

#endif
TMOD = 0x10; //set timer]1 as model (16-bit)
TL1 =TIMS; //initial timer1 low byte
TH1 =T1IMS >>§; //initial timer1 high byte
TR1=1; //timerl start running
ET1=1; //enable timer] interrupt
EA=1; //open global interrupt switch
count = 0; //initial counter
while (1); //loop

H

198 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2. Assembly Program

J* */
;/* --- STC MCU International Limited */
/¥ -—- STC 1T Series 16-bit Timer Demo */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */

JS* Y

;/* define constants */

#define MODEIT ;Timer clock mode, comment this line is 12T mode, uncomment is 1T mode
#ifdef MODEIT

TIMS EQU 0B80OH ;Ims timer calculation method in 1T mode is (65536-18432000/1000)
felse

TIMS EQU 0FAOOH ;1ms timer calculation method in 12T mode is (65536-18432000/12/1000)
#endif

;/* define SFR */
AUXR DATA SEH ;Auxiliary register
TEST LED BIT P1.0 ;work LED, flash once per second

;/* define variables */

COUNT DATA 20H ;1000 times counter (2 bytes)
ORG 0000H
LIMP MAIN
ORG 001BH

LIMP TMI1_ISR

s

;/* main program */

MAIN:
#ifdef MODEIT
MOV AUXR, #40H stimerl work in 1T mode
#endif
MOV TMOD, #10H ;set timerl as model (16-bit)
MOV TLI, #LOW TIMS ;initial timerl low byte
MOV THI, #HIGH T1MS ;initial timerl high byte
SETB TR1 stimer] start running
SETB ETI1 ;enable timerl interrupt
SETB EA ;open global interrupt switch
CLR A
MOV COUNT, A
MOV COUNT+1,A ;initial counter
SIMP §

STC MCU Limited. website: www.STCMCU.com 199

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

s

;/* Timer1 interrupt routine */

TM1 _ISR:
PUSH ACC
PUSH PSW
MOV TLI, #LOW TIMS ;reload timerl low byte
MOV THI, #HIGH T1IMS ;reload timer] high byte
MOV A, COUNT
ORL A, COUNT+1 ;check whether count(2byte) is equal to 0
INZ SKIP
MOV COUNT, #LOW 1000 ;1lms * 1000 -> 1s
MOV COUNT+I1,#HIGH 1000
CPL TEST LED ;work LED flash
SKIP:
CLR C
MOV A, COUNT
SUBB A, #1
MOV COUNT, A
MOV A, COUNT+1
SUBB A, #0
MOV COUNT+LA
POP PSW
POP ACC
RETI
END
200 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
7.3.3 Mode 2 (8-bit Auto-Reload Mode) and Demo Programs (C and ASM)

Mode 2 configures the timer register as an 8-bit counter(TL1) with automatic reload. Overflow from TL1 not
only set TFx, but also reload TL1 with the content of TH1, which is preset by software. The reload leaves TH1

unchanged.
) AUXR.6/T1x12=0
<12 TF1 Interrupt

SYSclk
Toggle
AUXR.6/T1x12=1 CLKOUTT
T1 Pin P35

GATE TICLKO

INTI

Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

STC12C5A608S2 is able to generate a programmable clock output on P3.5. When TICLKO/WAKE CLKO.! bit
in WAKE_CLKO SFR is set, T1 timer overflow pulse will toggle P3.5 latch to generate a 50% duty clock. The
frequency of clock-out = T'1 overflow rate/2.

If C/T(TMOD.6) = 0, Timer/Counter 1 is set for Timer operation (input from internal system clock), the

Frequency of clock-out is as following :
(SYSclk) / (256 — TH1) / 2, when AUXR.6 / TOx12=1
or (SYSclk/12)/(256-TH1)/2, when AUXR.6 / TOx12=0

If C/T(TMOD.6) = 1, Timer/Counter 1 is set for Conter operation (input from external P3.5/T1 pin), the

Frequency of clock-out is as following :
T1_Pin_CLK/ (256-TH1) /2

STC MCU Limited. website: www.STCMCU.com 201

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

;T1 Interrupt (falling edge) Demo programs, where T1 operated in Mode 2 (8-bit auto-relaod mode)
; The Timer Interrupt can not wake up MCU from Power-Down mode in the following programs

1. C program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU T1(Falling edge) Demo ------------------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"
sfr AUXR = 0x8e; //Auxiliary register

//T1 interrupt service routine

void tlint() interrupt 3 //T1 interrupt (location at 001BH)
{
}
void main()
{
AUXR = 0x40; /timer1 work in 1T mode
TMOD = 0x60; //set timer1 as counter mode2 (8-bit auto-reload)
TL1 =THI1 = 0xff; //fill with 0xff to count one time
TR1=1; //timerl start run
ET1=1; //enable T1 interrupt
EA=1; //open global interrupt switch
while (1);
}

202 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

2. Assembly program

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU T1(Falling edge) Demo ------------------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */

/* article, please specify in which data and procedures from STC */

/*
AUXR DATA 08EH

s

;interrupt vector table

ORG 0000H
LIMP MAIN
ORG 001BH
LIMP TIINT
ORG 0100H
MAIN:
MOV SP, #7FH

MOV AUXR, #40H
MOV TMOD, #60H
MOV A, #0FFH
MOV TLI, A
MOV THI, A

SETB TRI1
SETB ETI1
SETB EA
SIMP §

5
;T1 interrupt service routine

T1INT:
RETI

END

*/

;Auxiliary register

;T1 interrupt (location at 001BH)

;initial SP
;timerl work in 1T mode

;set timerl as counter mode?2 (8-bit auto-reload)

;fill with 0xff to count one time

;timerl start run
;enable T1 interrupt
;open global interrupt switch

STC MCU Limited.

website: www.STCMCU.com

203

www.STCMCU.com Tel:086-755-82948412 Fax:86-755-82905966

7.4 Programmable Clock Output and Demo Programs (C and ASM)

STC12C5A60S2 series MCU have three channel programmable clock outputs, they are Timer 0 programmable
clock output CLKOUTO(P3.4/T0), Timer 1 programmable clock output CLKOUT1(P3.5/T1) and Dedicated
Baud-Rate Timer programmable clock output (CLKOUT2/P1.0).

Mobile:(86)13922809991

There are some SFRs about programmable clock output as shown below.

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
AUXR Auxiliary register | 8EH | Tox12|Tix12| UART_Mox6|BRTR|s25MOD|BRTx12|EXTRAM|S1BRS | 0000 0000B
CLK_Output PCAWAKEUP | RXD_PIN_IE | TI_PIN_IE | TO_PIN_IE | LVD_WAKE | BRTCLKO |T1CLKO | TOCLKO
WAKE CLKo| _ Power down 8FH 0000 0000B
Wake-up control
register
prr |Dedicated Baud-l oy 0000 0000B
Rate Timer register

The satement (used in C language) of Special function registers AUXR/WAKE CLKO/BRT:

sfr AUXR 0x8E; //The address statement of Special function register AUXR
sfr WAKE CLKO 0x8F; //The address statement of SFR WAKE_CLKO
sfr BRT = 0x9C; //The address statement of Special function register BRT

The satement (used in Assembly language) of Special function registers AUXR/WAKE CLKO/BRT:

AUXR EQU 0x8E ;The address statement of Special function register AUXR
WAKE CLKO EQU 0x8F ;The address statement of SFR WAKE_CLKO
BRT EQU 0x9C ;The address statement of Special function register BRT

1. AUXR: Auxiliary register (Non bit-addressable)

SFR name | Address bit B7 B6
AUXR 8EH name |TOx12|{T1x12

TO0x12 : Timer 0 clock source bit.

0 : The clock source of Timer 0 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 0 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
T1x12 : Timer 1 clock source bit.

0 : The clock source of Timer 1 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 1 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
UART MOx6 : Baud rate select bit of UART1 while it is working under Mode-0

0 : The baud-rate of UART in mode 0 is SYSclk/12.

1 : The baud-rate of UART in mode 0 is SYSclk/2.
BRTR : Dedicated Baud-Rate Timer run control bit.

0 : The baud-rate generator is stopped.

1 : The baud-rate generator is enabled.
S2SMOD : the baud-rate of UART2 double contol bit.

0 : Default. The baud-rate of UART2 (S2) is not doubled.

1 : The baud-rate UART2 (S2) is doubled.

BS
UART MOx6

B4
BRTR

B3
S2SMOD

B2
BRTx12

B1
EXTRAM

BO
S1BRS

STC MCU Limited. website: www.STCMCU.com

204

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

BRTx12 : Dedicated Baud-Rate Timer counter control bit.
0 : The baud-rate generator is incremented every 12 system clocks.
1 : The baud-rate generator is incremented every system clock.
EXTRAM : Internal / external RAM access control bit.
0 : On-chip auxiliary RAM is enabled and located at the address 0x0000 to 0x03FF.
For address over 0x03FF, off-chip expanded RAM becomes the target automatically.
1 : On-chip auxiliary RAM is always disabled.
S1BRS : the baud-rate generator of UART1 select bit.
0 : Default. Select Timer 1 as the baud-rate generator of UART1
1 : Timer 1 is replaced by the independent baud-rate generator which is selected as the baud-rate of UART. In
other words, timer 1 is released to use in other functions.

2. WAKE CLKO: CLK Output Power down Wake-up control register (Non bit-Addressable)

SFR name [Address| bit B7 B6 BS B4 B3 B2 B1 BO
WAKE CLKO| 8FH |name|PCAWAKEUP|RXD_ PIN_IE|T1_PIN_IE|TO0_PIN_IE [LVD_WAKE |BRTCLKO|TICLKO|TOCLKO

PCAWAKEUP: When set and the associated-PCA interrupt control registers is configured correctly, the CEXn pin
of PCA function is enabled to wake up MCU from power-down state.

RXD PIN IE: When set and the associated-UART interrupt control registers is configured correctly, the RXD
pin (P3.0) is enabled to wake up MCU from power-down state.

T1 PIN IE: When set and the associated-Timer] interrupt control registers is configured correctly, the T1 pin
(P3.5) is enabled to wake up MCU from power-down state.

TO PIN IE: When set and the associated-Timer0 interrupt control registers is configured correctly, the T1 pin
(P3.4) is enabled to wake up MCU from power-down state.

LVD WAKE: When set and the associated-LVD interrupt control registers is configured correctly, the CMPIN
pin is enabled to wake up MCU from power-down state.

BRTCKLO : When set, P1.0 is enabled to be the clock output of Baud-Rate Timer (BRT). The clock rate is
BRG overflow rate divided by 2.

TICKLO : When set, P3.5 is enabled to be the clock output of Timer 1. The clock rate is Timer loverflow rate
divided by 2.

TOCKLO : When set, P3.4 is enabled to be the clock output of Timer 0. The clock rate is Timer Ooverflow rate
divided by 2.

3. BRT: Dedicated Baud-Rate Timer register (Non bit-Addressable)
SFR name |Address| bit B7 B6 B5 B4 B3 B2 Bl BO
BRT 9CH [name

It is used as the reload register for generating the baud-rate of the UART.

STC MCU Limited. website: www.STCMCU.com 205

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

7.4.1 Timer 0 Programmable Clock-out on P3.4 and Demo Program(C and ASM)

TFO Interrupt
Toggle
>{ CLKOUTO
i P3.4
TOC.LKO

Timer/Counter 0 Mode 2: 8-Bit Auto-Reload

STCI12C5A60S2 is able to generate a programmable clock output on P3.4. When TOCLKO/
WAKE_ CLKO.0 bit in WAKE CLKO SER is set, TO timer overflow pulse will toggle P3.4 latch to
generate a 50% duty clock. The frequency of clock-out = TO overflow rate/2.

If C/T(TMOD.Z) = 0, Timer/Counter 0 is set for Timer operation (input from internal system clock), the

Frequency of clock-out is as following :
(SYScIk) / (256 — THO) / 2, when AUXR.7 / T0x12=1
or (SYSclk/12)/(256 -THO0)/2, when AUXR.7 / T0x12=0

If C/T (TMOD.2) = 1, Timer/Counter 0 is set for Conter operation (input from external P3.4/T0 pin), the

Frequency of clock-out is as following :
TO0_Pin_CLK/ (256-THO) / 2

The following programs demostrate Program Clock Output on Timer 0 pin when Timer 0 operates as 8-bit auto-

reload Timer/Counter.

1. C Program:

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series Programmable Clock Output Demo ------------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */

/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"

//
/* define constants */

#define FOSC 18432000L

//#define MODE 1T //Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

206 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

#ifdef MODE IT
#define F38 4KHz
#else

#define F38 4KHz
#endif

/* define SFR */

(256-FOSC/2/38400)

(256-FOSC/2/12/38400)

//38.4KHz frequency calculation method of 1T mode

//38.4KHz frequency calculation method of 12T mode

sfr AUXR =0x8e; //Auxiliary register
sfr WAKE CLKO = 0x8f; //wakeup and clock output control register
sbit TOCLKO =P3"4; //timer0 clock output pin
/
/* main program */
void main()
{
#ifdef MODEIT
AUXR =0x80; /timer0 work in 1T mode
#endif
TMOD = 0x02; //set timer0 as mode2 (8-bit auto-reload)
TLO =F38 4KHz; //initial timerQ
THO =F38 4KHz; //initial timerQ
TRO =1; //timer(start running
WAKE CLKO = 0x01; //enable timer0 clock output
while (1); //loop
b
STC MCU Limited. website: www.STCMCU.com 207

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. Assembly Program:

J* */
;/* --- STC MCU International Limited */
;/* --- STC 1T Series Programmable Clock Output Demo ------------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */
/% */

;/* define constants */
#define MODE 1T ;Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

#ifdef MODE IT

F38 4KHz EQU 010H ;38.4KHz frequency calculation method of 1T mode is (256-18432000/2/38400)
felse

F38 4KHz EQU OECH ;38.4KHz frequency calculation method of 12T mode (256-18432000/2/12/38400)
#endif

;/* define SFR */

AUXR DATA 08EH ;Auxiliary register
WAKE CLKO DATA 08FH ;wakeup and clock output control register
TOCLKO BIT P3.4 ;timer0 clock output pin

ORG 0000H

LIMP MAIN

s

;/* main program */

MAIN:
#ifdef MODEIT
MOV AUXR, #80H stimerO work in 1T mode
#endif
MOV TMOD, #02H ;set timer(O as mode?2 (8-bit auto-reload)
MOV TLO, #F38 4KHz ;initial timer0
MOV THO, #F38 4KHz ;initial timer0
SETB TRO
MOV WAKE CLKO, #01H ;enable timer0 clock output
SIMP §
END

208 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

7.4.2 Timer 1 Programmable Clock-out on P3.5 and Demo Program(C and ASM)

R AUXR.6/T1x12=0
12 TF1 Interrupt
} _ Toggle

AUXR.6/T1x12=1 |_|1
o >{ CLKOUT!

P3.5

T1 Pin control

TICLKO
(8 Bits)

Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

STC12C5A60S2 is able to generate a programmable clock output on P3.5. When TICLKO/WAKE CLKO.! bit
in WAKE_CLKO SFR is set, T1 timer overflow pulse will toggle P3.5 latch to generate a 50% duty clock. The
frequency of clock-out = T'1 overflow rate/2.

If C/T(TMOD.6) = 0, Timer/Counter 1 is set for Timer operation (input from internal system clock), the

Frequency of clock-out is as following :
(SYSclk) / (256 — TH1) / 2, when AUXR.6 / TOx12=1
or (SYSclk/12)/(256 -TH1)/2, when AUXR.6 / TOx12=0

If C/T(TMOD.6) = 1, Timer/Counter 1 is set for Conter operation (input from external P3.5/T1 pin), the

Frequency of clock-out is as following :
T1_Pin_CLK/(256-TH1) /2

The following programs demostrate Program Clock Output on Timer 1 pin when Timer 1 operates as 8-bit auto-
reload Timer/Counter.

1. C Program:

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series Programmable Clock Output Demo ------------ */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"

/1

STC MCU Limited. website: www.STCMCU.com 209

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

/* define constants */
#define FOSC 18432000L
//#define MODE 1T //Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

#ifdet MODE 1T

#define F38 4KHz (256-FOSC/2/38400) //38.4KHz frequency calculation method of 1T mode
felse

#define F38 4KHz (256-FOSC/2/12/38400) //38.4KHz frequency calculation method of 12T mode
#endif

/* define SFR */

sfr AUXR = 0x8e; //Auxiliary register

sfr - WAKE CLKO = 0x8f; //wakeup and clock output control register
sbit T1CLKO = P375; /timer1 clock output pin

/]

/* main program */
void main()

{
#ifdef MODEIT
AUXR = 0x40; //timer]l work in 1T mode
#endif
TMOD = 0x20; //set timer1 as mode2 (8-bit auto-reload)
TL1 = F38 4KHz; //initial timerl
TH1 = F38 4KHz; //initial timerl
TR1 = 1; /timerl start running
WAKE CLKO = 0x02; //enable timerl clock output
while (1); //loop
H

210 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2. Assembly Program:

¥ */
;/*¥ --- STC MCU International Limited */
;/* --- STC 1T Series Programmable Clock Output Demo -------------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */
% */

;/* define constants */
#define MODE 1T ;Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

#ifdlef MODE 1T

F38 4KHz EQU 010H ;38.4KHz frequency calculation method of 1T mode is (256-18432000/2/38400)
#else

F38 4KHz EQU OECH ;38.4KHz frequency calculation method of 12T mode (256-18432000/2/12/38400)
#endif

;/* define SFR */

AUXR DATA 08EH ;Auxiliary register
WAKE CLKO DATA 08FH ;wakeup and clock output control register
T1CLKO BIT P3.5 ;timer] clock output pin

ORG 0000H

LIMP MAIN

s

;/* main program */

MAIN:
#ifdef MODEIT
MOV AUXR, #40H stimer] work in 1T mode
#endif
MOV TMOD, #20H ;set timerl as mode?2 (8-bit auto-reload)
MOV TLI1, #F38 4KHz ;initial timerl
MOV THI, #F38 4KHz ;initial timerl
SETB TRI1
MOV WAKE CLKO, #02H ;enable timer1 clock output
SIMP §
END

STC MCU Limited. website: www.STCMCU.com 211

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

7.4.3 Baud Rate Generator Programmable Clock Output on P1.0 and Demo Program

XR,Z/BRTx12=O —» To UART

Toggle

SYSclk 8 Bits |overflow
J\C 0/:0 Timer CLROUT2
AUXR.2/BRTx12=1 H
% P1.0
AUXR.4/BRTR BRTCLKO

STC12C5A608S2 is able to generate a programmable clock output on P1.0. When BRTCLKO bit in WAKE CLKO
is set, BRT timer overflow pulse will toggle P1.0 latch to generate a 50% duty clock. The Frequency of Clock-
Out = Baud-Rate Timer overflow rate/2.
Namely the Frequency of Clock-Out is shown as below :
(SYScIk) / (256 -BRT)/2, when BRTx12=1
or (SYSclk/12) /(256 — BRT)/2, when BRTx12=0

The following program is a assembly language code that domestrates timer 1 of STC12C5A60S2 series MCU
acted as baud rate generator.

J* */
;/* --- STC MCU International Limited */
/¥ -—- STC 1T Series MCU Timer 1 acted as Baud Rate Generator Demo ---------===nmmmmmemun- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */
/% */
;Declare STC11/10xx series MCU SFR

AUXR EQU 8EH
ok *
¥/ /
;:Define baud rate auto-reload counter
;**

;The following Reload-Count and Baud is based on SYSclk =22.1184MHz, 1T mode, SMOD=1

:RELOAD COUNT EQU OFFH :Baud=1,382,400 bps
:RELOAD COUNT EQU OFEH :Baud=691,200 bps
:RELOAD COUNT EQU OFDH :Baud=460,800 bps
:RELOAD COUNT EQU OFCH :Baud=345,600 bps
:RELOAD COUNT EQU OFBH :Baud=276,480 bps
:RELOAD COUNT EQU OFAH :Baud=230,400 bps
:RELOAD COUNT EQU OF4H :Baud=115,200 bps
:RELOAD COUNT EQU OESH :Baud=57,600 bps
:RELOAD COUNT EQU ODCH :Baud=38,400 bps
:RELOAD COUNT EQU 0BSH :Baud=19,200 bps
:RELOAD COUNT EQU 70H :Baud=9,600 bps

212 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

- 3k sfe s sk sk sfe sk sk sk sk sk sk sk sk sk sk sk sk sk skl sk sk skl sk sk stk sk sk stk sk sk stk sk stk sk sk sk sk sk ik sk sk stk sk sk stk sk sk skok sk sk skokok skokokok skekokokskeskokok
s

;The following Reload-Count and Baud is based on SYSclk =1.8432MHz, 1T mode, SMOD=1
;Baud=115,200 bps
;Baud=57,600 bps
;Baud=38,400 bps
;Baud=28,800 bps
;Baud=19,200 bps
;Baud=9,600 bps
;Baud=4,800 bps
;Baud=2,400 bps
;Baud=1,200 bps
;**
;The following Reload-Count and Baud is based on SYSclk =18.432MHz, 1T mode, SMOD=1
;Baud=1,152,000 bps
;Baud=576,000 bps
;Baud=288,000 bps
;Baud=144,000 bps
;Baud=115,200 bps
;Baud=57,600 bps
;Baud=38,400 bps
;Baud=28,800 bps
;Baud=19,200 bps
;Baud=9,600 bps
;**
;The following Reload-Count and Baud is based on SYSclk =18.432MHz, 1T mode, SMOD=0
;Baud=576,000 bps
;Baud=288,000 bps
;Baud=144,000 bps
;Baud=115,200 bps
;Baud=57,600 bps
;Baud=38,400 bps
;Baud=28,800 bps
;Baud=19,200 bps
;Baud=96,000 bps
;Baud=4,800 bps
;***
;The following Reload-Count and Baud is based on SYSclk =18.432MHz, 12T mode, SMOD=0
;Baud=9,600 bps
;Baud=4,800 bps
;Baud=2,400 bps
;Baud=1,200 bps
;***
;The following Reload-Count and Baud is based on SYSclk =18.432MHz, 12T mode, SMOD=1
;Baud=19,200 bps
;Baud=9,600 bps
;Baud=4,800 bps
;Baud=2,400 bps
;Baud=1,200 bps

;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT

;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT

;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT

RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT

RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT
;RELOAD_COUNT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

OFFH
OFEH
OFDH
OFCH
OFAH
OF4H
OE8H
0DOH
0AOH

OFFH
OFEH
OFDH
OFCH
OF6H

OECH
0E2H
0D8H
0C4H
088H

OFFH
OFEH
OFDH
OFCH
OF6H

OECH
0E2H
0D8H
0C4H
088H

OFBH
OF6H
OECH
0D8H

OFBH
OF6H
OECH
0D8H
0BOH

STC MCU Limited.

website:

www.STCMCU.com

213

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

« 3k s s sk sk s sk sk sk s sk st sk sk sk st sk sk sk st sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk stk sk sk stk sk stk skoskokok skl
]

;The following Reload-Count and Baud is based on SYSclk =11.0592MHz, 12T mode, SMOD=0

;RELOAD_COUNT EQU OFFH ;Baud=28,800 bps
;RELOAD_COUNT EQU OFEH ;Baud=14,400 bps
;RELOAD_COUNT EQU OFDH ;Baud=9,600 bps
;RELOAD COUNT EQU 0OFAH ;Baud=4,800 bps
;RELOAD_COUNT EQU 0F4H ;Baud=2,400 bpsS
;RELOAD COUNT EQU 0E8H ;Baud=1,200 bps

« 3k s s sk sk s sk sk sk s sk st sk sk sk st sk sk sk st sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk stk sk skeosteosk sk stk skoskoskok skl
]
« 3k s s sk sk s sk sk sk s sk st sk sk sk st sk sk sk st sk sk sk st sk sk sk sk sk sk sk sk sk sk sk sk stk sk sk stk sk sk stk sk stk sk skotok skl
]

;The following Reload-Count and Baud is based on SYSclk =11.0592MHz, 12T mode, SMOD=1

;RELOAD_COUNT EQU OFFH ;Baud=57,600 bps
;RELOAD_COUNT EQU OFEH ;Baud=28,800 bps
;RELOAD_COUNT EQU OFDH ;Baud=14,400 bps
;RELOAD COUNT EQU 0OFAH ;Baud=9,600 bps
;RELOAD COUNT EQU 0F4H ;Baud=4,800 bps
;RELOAD COUNT EQU 0E8H ;Baud=2,400 bps
;RELOAD COUNT EQU 0DOH ;Baud=1,200 bps
;**
;Define LED indicator
LED MCU_START EQU P1.7 ;MCU operating LED indicator
ORG 0000H
AIJMP MAIN
ORG 0023H
AJMP UART Interrupt ;Jump into RS232 UART-Interrupt service subroutine
NOP
NOP
MAIN:
MOV SP, #7FH ;Set stack pointer
CLR LED MCU_START ;Open MCU operating LED indicator
ACALL Initial UART ;Initialize UART
MOV RO, #30H ;30H = the ASCII code of printable character '0'
MOV R2, #10 ;Send ten characters '0123456789'
LOOP:
MOV A, RO
ACALL Send One Byte ;Send one byte

; if Character-Display, display '0123456789'
;if Hexadecimal-Display, display '30 31 32 33 34 3536 37 38 39"

INC RO
DINZ R2, LOOP
MAIN_WAIT:
SIMP MAIN_WAIT ;infinite circle

214 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
UART _Interrupt: ;UART-Interrupt service subroutine
JB RI, Is UART Receive
CLR TI ;Clear serial port transmit interrupt flag
RETI
Is UART Receive:
CLR RI
PUSH ACC
MOV A, SBUF ;acquire the received byte
ACALL Send One Byte ;re-send the received byte
POP ACC
RETI
Initial UART: ;Initialize UART
;SCON Bit: 7 6 5 4 3 2 1 0
; SMO/FE SM1 SM2 REN TBS8 RB8 TI RI
MOV SCON, #50H ;0101,0000 8-bit variable baud rate,no odd parity bit
MOV TMOD, #21H ;Use Timer 1 as 8 bit auto-reload counter
MOV THI, #RELOAD_ COUNT ;Set auto-reload count of Timer 1
MOV TLI, #RELOAD_COUNT
R ORL PCON, #80H ;baud rate double
R ORL AUXR, #01000000B ;Use Timer 1 in 1T mode
ANL AUXR, #10111111B ;Use Timer 1 in 12T mode
SETB RI1 ; Start up Timer 1
SETB ES
SETB EA
RET

s

;Portal parameter: A= the byte to send

Send One Byte: ;Send one byte
CLR ES
CLR TI ;Clear serial port transmit interrupt flag
MOV SBUF, A
Wait_Send Finish:
INB TL, Wait_Send_ Finish ;Wait to finish send
CLR TI
SETB ES
RET
R \
END

STC MCU Limited.

website: www.STCMCU.com 215

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

The example program that demostrates programmable clock out as follows:
/* SYSclk = 18.432MHz; T0,T1 and independent baud rate generator all in 1T mode. */
#include "reg51.h"

sfr WAKE _CLKO = 0x8F;
sfr AUXR = 0x8E;
sfr BRT =0x9C;
main ()
{
TMOD = 0x22;
// ' TO and T1 all in mode 2, 8-bit auto-reload counter
AUXR = (AUXR | 0x80); //' TO in 1T mode
AUXR = (AUXR | 0x40); //' Tl in 1T mode
AUXR = (AUXR | 0x04); /I Dedicated Baud-Rate Timer in 1T mode
BRT = (256-74); //8-bit reload value in BRT, SYSclkO is 124.540KHz
THO = (256-74); //8-bit reload value in THO,SY SclkO=18432000/2/74=124540.54
THI = (256-240); //8-bit reload value in TH1, SYSclkO=18432000/2/240=38400
WAKE _CLKO = (WAKE_CLKO | 0x07);
/lallow TO, T1 and Independent Baud rate Generator output clock
TRO=1; //start timer O as couter, system clock is divided and output
TR1=1; //start timer 1 as counter, system clock is divided and output
AUXR = (AUXR | 0x10); //start independent baud rate generator as counter
//system clock has been output and could be watched through oscilloscope
while(1);
§
216 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

The following programs demostrate Program Clock Output of Independent Baud Raud Timer on P1.0 pin

1. C Program:

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series Programmable Clock Output Demo ------------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* - Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"

/]

/* define constants */
#define FOSC 18432000L

//#define MODEIT //Timer clock mode, comment this line is 12T mode, uncomment is 1T mode
#ifdef MODEIT

#define F38 4KHz (256-FOSC/2/38400) //38.4KHz frequency calculation method of 1T mode

felse

#define F38 4KHz (256-FOSC/2/12/38400) //38.4KHz frequency calculation method of 12T mode
#endif

/* define SFR */

sfr AUXR = 0x8e; //Auxiliary register

sfr WAKE CLKO = 0x8f; /Iwakeup and clock output control register
sfr BRT = 0x9c;

sbit BRTCLKO = P170; //BRT clock output pin

/]

/* main program */
void main()

{
#ifdef MODEIT
AUXR = 0x04; //BRT work in 1T mode
#endif
BRT =F38 4KHz; //initial BRT
AUXR |- 0x10; //BRT start running
WAKE CLKO = 0x04; //lenable BRT clock output
while (1); //1oop
H

STC MCU Limited. website: www.STCMCU.com 217

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. Assembly Program:

¥ */
;/*¥ --- STC MCU International Limited */
;/*¥ --- STC 1T Series Programmable Clock Output Demo ------------ */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
3/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */
/% */

;/* define constants */
#define MODEI1T ;Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

#ifdef MODEIT

F38 4KHz EQU 010H ;38.4KHz frequency calculation method of 1T mode is (256-18432000/2/38400)
#else

F38 4KHz EQUOECH ;38.4KHz frequency calculation method of 12T mode (256-18432000/2/12/38400)
#endif

;/* define SFR */

AUXR DATA 08EH ;Auxiliary register
WAKE CLKO DATA 08FH ;wakeup and clock output control register
BRT DATA 09CH
BRTCLKO BIT P1.0 ;BRT clock output pin
ORG 0000H
LIMP MAIN

s

;/* main program */

MAIN:
#ifdef MODEIT
MOV AUXR, #04H :BRT work in 1T mode
#endif
MOV BRT, #F38 4KHz ;initial BRT reload value
ORL AUXR, #10H ;BRT start run

MOV WAKE CLKO, #04H ;enable BRT clock output

SIMP §

END

218 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

7.5 Application Notes for Timer in practice

(1) Real-time Timer
Timer/Counter start running, When the Timer/Counter is overflow, the interrupt request generated, this
action handle by the hardware automatically, however, the process which from propose interrupt request to
respond interrupt request requires a certain amount of time, and that the delay interrupt request on-site with
the environment varies, it normally takes three machine cycles of delay, which will bring real-time processing
bias. In most occasions, this error can be ignored, but for some real-time processing applications, which
require compensation.

Such as the interrupt response delay, for timer mode 0 and mode 1, there are two meanings: the first,
because of the interrupt response time delay of real-time processing error; the second, if you require multiple
consecutive timing, due to interruption response delay, resulting in the interrupt service program once again
sets the count value is delayed by several count cycle.

If you choose to use Timer/Counter mode 1 to set the system clock, these reasons will produce real-time
error for this situation, you should use dynamic compensation approach to reducing error in the system clock,
compensation method can refer to the following example program.

CLR EA ;disable interrupt

MOV A, TLx ;read TLx

ADD A, #LOW ;LOW is low byte of compensation value
MOV TLx, A ;update TLx

MOV A, THx ;read THx

ADDC A, #HIGH ;HIGH is high byte of compensation value
MOV THx, A ;update THx

SETB = EA ;enable interrupt

(2) Dynamic read counts

When dynamic read running timer count value, if you do not pay attention to could be wrong, this is because it
is not possible at the same time read the value of the TLx and THx. For example the first reading TLx then THx,
because the timer is running, after reading TLx, TLx carry on the THx produced, resulting in error; Similarly,
after the first reading of THx then TLXx, also have the same problems.

A kind of way avoid reading wrong is first reading THx then TLx and read THx once more, if the THx twice
to read the same value, then the read value is correct, otherwise repeat the above process. Realization method
reference to the following example code.

RDTM: MOV A, THx ;save THx to ACC

MOV RO, TLx ;save TLx to RO
CINE A, THXx, RDTM ;read THx again and compare with the previous value
MOV R1, A ;save THx to R1

STC MCU Limited. website: www.STCMCU.com 219

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Chapter 8. Serial Interface (UART)

8.1 UART with enhanced function

STC12C5A60S2 series MCU have two Universal Asychronous Receivers/Transmitters serial port 1
and serial port 2. The serial ports are both full duplex, meaning they can transmit and receive simultane-
ously. They are also receive-buffered, meaning they can commence reception of a second byte before a previ-
ously received byte has been read from the reeeive register. (However,if the first byte still hasn’t been read
by the time reception of the second byte is complete, one of the bytes will be lost). The serial ports 1 receive
and transmit share the same SFR — SBUF, but actually there is two SBUF in the chip, one is for transmit and the
other is for receive. Similarly, The serial ports 2 receive and transmit share the same SFR — S2BUF which also
have two S2BUF in the chip, one for transmit and the other for receive.

The serial ports(UART1 and UART?2) can be both operated in 4 different modes: Mode 0 provides synchronous
communication while Modes 1, 2, and 3 provide asynchronous communication. The asynchronous communication
operates as a full-duplex Universal Asynchronous Receiver and Transmitter (UART), which can transmit and
receive simultaneously and at different baud rates.

Serial communiction involves the transimission of bits of data through only one communication line. The data are
transimitted bit by bit in either synchronous or asynchronous format. Synchronous serial communication transmits
ont whole block of characters in syschronization with a reference clock while asynchronous serial communication
randomly transmits one character at any time, independent of any clock.

8.1.1 Special Function Registers about UART1

Value after

Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
BRT Baud-Rate Timer 9CH 0000 0000B

BRTR | S2SMOD | BRTx12

AUXR Auxiliary register 8EH TOX12|T1X12|UART MOX6 EXTRAMlSlBRS 0000 0000B
SCON | Serial port Control | 98H |SMOFE| sM1 | sM2 | REN | TB8 | RB§ | TI | RI |0000 0000B

SBUF Serial port Buffer 99H XXXX XXxxB

PCON Power Control 87H | smop|smopo | LvDF | PoF | GF1 | GFo | PD | DL {0001 0000B

IE Interrupt Enable | ASH | EA |ELVD|EADC| ES | ETI | EX1 | ETO | EX0 |0x00 0000B

» Interrupt Priority | oo | PPCA | pvD | paDC | ps | P11 | px1 | PO | Px0 0000 0000B

Low

PH lnterrlgitgll’lrlorlty B7H PPCAH | PLVDH [PADCH | PsH [PT1H]| PX1H | PTOH | PX0H 0000 0000B

SADEN |Slave Address Mask| B9H 0000 0000B

SADDR Slave Address A9H 0000 0000B
CLK Output Power PCAWAKEUPlRX])7I’INJF|T17[’1NJElTOiPlNilElLVD7WAKE|BR l'L'I.KOlTlCLKOlTOCLKO

WAKE _CLKO | down Wake-up 8FH 0000 0000B

control register

220 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
1. Serial Port 1 (UART1) Control Register: SCON and PCON

Serial port 1 of STC12C5A60S2 series has two control registers: Serial port control register (SCON) and
PCON which used to select Baud-Rate

SCON: Serial port Control Register (Bit-Addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
SCON 98H name | SMO/FE | SM1 | SM2 | REN | TB8 | RBS8 TI RI

FE: Framing Error bit. The SMODO bit must be set to enable access to the FE bit
0: The FE bit is not cleared by valid frames but should be cleared by software.
1: This bit set by the receiver when an invalid stop bit id detected.

SMO0,SM1 : Serial Port Mode Bit 0/1.

SMO SM1 Description Baud rate
0 0 8-bit shift register SYSclk/12
0 1 8-bit UART variable
1 0 9-bit UART SYSclk/64 or SYSclk/32(SMOD=1)
1 1 9-bit UART variable

SM2 : Enable the automatic address recognition feature in mode 2 and 3. If SM2=1, RI will not be
set unless the received 9th data bit is 1, indicating an address, and the received byte is a
Given or Broadcast address. In model, if SM2=1 then RI will not be set unless a valid stop
Bit was received, and the received byte is a Given or Broadcast address. In mode 0, SM2 should be 0.

REN : When set enables serial reception.
TBS8 : The 9th data bit which will be transmitted in mode 2 and 3.
RB8 : In mode 2 and 3, the received 9th data bit will go into this bit.

TI : Transmit interrupt flag. Set by hardware when a byte of data has been transmitted by UARTO (after the 8th
bit in 8-bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UARTO in-
terrupt is enabled, setting this bit causes the CPU to vector to the UARTO interrupt service routine. This bit
must be cleared manually by software.

RI : Receive interrupt flag. Set to ‘1’ by hardware when a byte of data has been received by UARTO (set at the
STOP bit sam-pling time). When the UARTO interrupt is enabled, setting this bit to ‘1’ causes the CPU to
vector to the UARTO interrupt service routine. This bit must be cleared manually by software.

SMOD/PCON.7 in PCON register can be used to set whether the baud rates of mode 1, mode2 and mode 3
are doubled or not.

PCON: Power Control register (Non bit-addressable)

SFR name Address bit B7 B6 B5 B4 B3 B2 Bl BO
PCON 87H name | SMOD SMODO | LVDF | POF | GFl1 GFO | PD | IDL

SMOD: double Baud rate control bit.
0 : Disable double Baud rate of the UART.
1 : Enable double Baud rate of the UART in mode 1,2,0r 3.
SMODO: Frame Error select.
0 : SCON.7 is SMO function.
1 : SCON.7 is FE function. Note that FE will be set after a frame error regardless of the state of SMODO.

STC MCU Limited. website: www.STCMCU.com 221

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. SBUF: Serial port 1 Data Buffer register (Non bit-addressable)

SFR name Address bit B7 B6 B5 B4 B3 B2 Bl BO
SBUF 99H name

It is used as the buffer register in transmission and reception.The serial port buffer register (SBUF) is really two
buffers. Writing to SBUF loads data to be transmitted, and reading SBUF accesses received data. These are two
separate and distinct registers, the transimit write-only register, and the receive read-only register.

3. AUXR: Auxiliary register (Non bit-addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
AUXR 8EH name |[TOx12|T1x12| UART MO0x6 [BRTR[S2SMOD| BRTx12 |[EXTRAM|S1BRS

T0x12 : Timer 0 clock source bit.

0 : The clock source of Timer 0 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 0 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
T1x12 : Timer 1 clock source bit.

0 : The clock source of Timer 1 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 1 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
UART MOx6 : Baud rate select bit of UART1 while it is working under Mode-0

0 : The baud-rate of UART in mode 0 is SYSclk/12.

1 : The baud-rate of UART in mode 0 is SYSclk/2.
BRTR : Dedicated Baud-Rate Timer run control bit.

0 : The baud-rate generator is stopped.

1 : The baud-rate generator is enabled.
S2SMOD : the baud-rate of UART2 double contol bit.

0 : Default. The baud-rate of UART2 (S2) is not doubled.

1 : The baud-rate UART?2 (S2) is doubled.
BRTx12 : Dedicated Baud-Rate Timer counter control bit.

0 : The baud-rate generator is incremented every 12 system clocks.

1 : The baud-rate generator is incremented every system clock.

EXTRAM : Internal / external RAM access control bit.
0 : On-chip auxiliary RAM is enabled and located at the address 0x0000 to 0x03FF.
For address over 0x03FF, off-chip expanded RAM becomes the target automatically.
1 : On-chip auxiliary RAM is always disabled.
S1BRS : the baud-rate generator of UART1 select bit.
0 : Default. Select Timer 1 as the baud-rate generator of UART1
1 : Timer 1 is replaced by the independent baud-rate generator which is selected as the baud-rate of UART. In
other words, timer 1 is released to use in other functions.

Seial port 1(UART1) can select Timer 1, also can select independent baud-rate generator as its baud-rate
generator. When SIBRS/AUXR.0 (The baud-rate generator of UART1) is set, Seial port I(UART1) will select
independent baud-rate generator as its baud-rate generator, and Timer 1 can be released for other functions such
as timer, counter and programmable clock output.

222 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

4. BRT: Dedicated Baud-Rate Timer register (Non bit-Addressable)
SFR name |Address| bit B7 B6 B5 B4 B3 B2 Bl BO
BRT 9CH [name

It is used as the reload register for generating the baud-rate of the UART.

5. Slave Address Control registers SADEN and SADDR

SADEN: Slave Address Mask register

SADDR: Slave Address register

SADDR register is combined with SADEN register to form Given/Broadcast Address for automatic address
recognition. In fact, SADEN function as the "mask" register for SADDR register. The following is the example
for it.

SADDR = 1100 0000
SADEN = 11111101
Given = 1100 00x0 —— The Given slave address will be checked except bit 1 is

treated as "don't care".
The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zero in this
result is considered as "don't care" and a Broad cast Address of all " don't care". This disables the automatic
address detection feature.

6. Power down wake-up register: WAKE _CLKO (Non bit-Addressable)

SFR name | Address| bit B7 B6 B5 B4 B3 B2 Bl BO
WAKE;CLKO 8FH |name|PCAWAKEUP RXD PIN_IE|T1_PIN_IE|TO PIN_IE|LVD WAKE|BRTCKLO [T1CKLO | TOCKLO

PCAWAKEUP: When set and the associated-PCA interrupt control registers is configured correctly, the CEXn pin
of PCA function is enabled to wake up MCU from power-down state.

RXD_PIN IE: When set and the associated-UART interrupt control registers is configured correctly, the RXD
pin (P3.0) is enabled to wake up MCU from power-down state.
T1 PIN IE: When set and the associated-Timer] interrupt control registers is configured correctly, the T1 pin
(P3.5) is enabled to wake up MCU from power-down state.
TO PIN IE: When set and the associated-Timer0 interrupt control registers is configured correctly, the T1 pin
(P3.4) is enabled to wake up MCU from power-down state.
LVD WAKE: When set and the associated-LVD interrupt control registers is configured correctly, the CMPIN
pin is enabled to wake up MCU from power-down state.
BRTCKLO : When set, P1.0 is enabled to be the clock output of Baud-Rate Timer (BRT). The clock rate is
BRG overflow rate divided by 2.
TICKLO : When set, P3.5 is enabled to be the clock output of Timer 1. The clock rate is Timer loverflow rate
divided by 2.
TOCKLO : When set, P3.4 is enabled to be the clock output of Timer 0. The clock rate is Timer Ooverflow rate
divided by 2.

STC MCU Limited. website: www.STCMCU.com 223

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

7. Registers related with UART1 interrupt : IE, IP and IPH

IE: Interrupt Enable Rsgister (Bit-addressable)

SFR name | Address bit B7 B6 BS B4 B3 B2 B1 BO
IE A8H name EA ELVD | EADC| ES ET1 | EX1 | ETO EXO0

EA: disables all interrupts.

If EA = 0,no interrupt will be acknowledged.

If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.
ES: Serial port 1(UART1) interrupt enable bit.

If ES =0, Serial port 1(UART1) interrupt will be diabled.
IfES =1, Serial port I(UART1) interrupt is enabled.

IPH: Interrupt Priority High Register (Non bit-addressable)

SFR name | Address bit B7 Bo6 B5 B4 B3 B2 B1 BO
[PH B7H name |PPCAH | PLVDH |[PADCH| PSH PT1H [PXIH| PTOH | PXOH
IP: Interrupt Priority Register (Bit-addressable)
SFR name | Address bit B7 B6 B5 B4 B3 B2 B1 BO
1P B8H name PPCA | PLVD | PADC PS PT1 PX1 PTO PXO0

PSH, PS: Serial Port 1 (UART1) interrupt priority control bits.
if PSH=0 and PS=0, UART1 interrupt is assigned lowest priority (priority 0).
if PSH=0 and PS=1, UART1 interrupt is assigned lower priority (priority 1).
if PSH=1 and PS=0, UART1 interrupt is assigned higher priority (priority 2).
if PSH=1 and PS=1, UART1 interrupt is assigned highest priority (priority 3).

224 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

8.1.2 UART1 Operation Modes

The serial port 1 (UART) can be operated in 4 different modes which are configured by setting SM0 and SM1
in SFR SCON. Mode 1, Mode 2 and Mode 3 are asynchronous communication. In Mode 0, UART1 is used as a
simple shift register.

8.1.2.1 Mode 0: 8-Bit Shift Register

Mode 0, selected by writing 0s into bits SM1 and SMO of SCON, puts the serial port into 8-bit shift register mode.
Serial data enters and exits through RXD. TXD outputs the shift clock. Eight data bits are transmitted/received
with the least-significant (LSB) first. The baud rate is fixed at 1/12 the System clock cycle in the default state. If
AUXR.5(UART_MOx6) is set, the baud rate is 1/2 System clock cycle.

Transmission is initiated by any instruction that uses SBUF as a destination register. The “write to SBUF” signal
also loads a “1” into the 9" position of the transmit shift register and tells the TX Control block to commence a
transmission. The internal timing is such that one full system clock cycle will elapse between "write to SBUE,"
and activation of SEND.

SEND transfers the output of the shift register to the alternate output function line of P3.0, and also transfers Shift
Clock to the alternate output function line of P3.1. At the falling edge of the Shift Clock, the contents of the shift
register are shifted one position to the right.

As data bits shift out to the right, “0” come in from the left. When the MSB of the data byte is at the output
position of the shift register, then the “17 that was initially loaded into the 9" position is just to the left of the
MSB, and all positions to the left of that contains zeroes. This condition flags the TX Control block to do one last
shift and then deactivate SEND and set TI. Both of these actions occur after "write to SBUF".

Reception is initiated by the condition REN=1 and RI=0. After that, the RX Control unit writes the bits 11111110
to the receive shift register, and in the next clock phase activates RECEIVE. RECEIVE enables SHIFT CLOCK
to the alternate output function line of P3.1.At RECEIVE is active, the contents of the receive shift register are
shifted to the left one position. The value that comes in from the right is the value that was sampled at the P3.0
pin the rising edge of Shift clock.

As data bits come in from the right, “1”’s shift out to the left. When the “0” that was initially loaded into the right-
most position arrives at the left-most position in the shift register, it flags the RX Control block to do one last shift
and load SBUF. Then RECEIVE is cleared and RI is set.

STC MCU Limited. website: www.STCMCU.com 225

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

INTERNAL BUS

WRITE
S;SF RXD/P3.0
= cL OUTPUT FUNCTION
’7
»{START SHIFT
SYSclk/12
0 TX CONTROL
»ITX CLOCK TI SEND
1
SERIAL
SYSclk/2 Jl: PORT <—C(:“
Lo
AUXR S(UART MOX6) »[RXCLOCK RI RECEIVE
RX CONTROL
REE:D—» START SHIFT
0 11111110
2 . INPUT FUNCTION
LOAD
SBUF SHIFT
READ
SBUF
INTERNAL BUS
WRITE TO SBUF
SEND |
SHIFT
M [[M [[M M RANSMIT
RXDMDATAOUT)\ _D0___ X_ DI X D2 X D3 X D4 X D5 X D6 X D7/
TXD(SHIFT CLOCK)| [[| | | [| [| [| | | | |
I —
WRITE TO SCON(CLEAR RI)
RI | —
RECEIVE
SHIFT M M1 M M N Mn Mn |-| RECEIVE
RXD(DATA IN) o oL 2 2 s rps rps rpz
TXD(SHIFT CLOCK)| | | | | | | | | | | I | I | |

Serial Port Mode 0

226 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
8.1.2.2 Mode 1: 8-Bit UART with Variable Baud Rate

10 bits are transmitted through TXD or received through RXD. The frame data includes a start bit(0), 8 data bits
and a stop bit(1). One receive, the stop bit goes into RB8 in SFR — SCON. The baud rate is determined by the
Timer 1 or BRT overflow rate.

Baud rate in mode 1= (2°°° /32) x Timer 1 overflow rate (if AUXR.0/SIBRS=0)
(2°™°" /32) x BRT overflow rate (if AUXR.0/S1BRS=1)

When T1x12=0, Timer 1 overflow rate = SYSclk/12/(256-TH1);
When T1x12=1, Timer 1 overflow rate = SYSclk / (256-TH1);
AND

When BRTx12=0, Dedicated Baud-Rate Timer (BRT) overflow rate = SYSclk/12/(256-BRT);
When BRTx12=1, Dedicated Baud-Rate Timer (BRT) overflow rate = SYSclk / (256-BRT);

Transmission is initiated by any instruction that uses SBUF as a destination register. The “write to SBUF”
signal also loads a “1” into the 9" bit position of the transmit shift register and flags the TX Control unit that a
transmission is requested. Transmission actually happens at the next rollover of divided-by-16 counter. Thus the
bit times are synchronized to the divided-by-16 counter, not to the “write to SBUF” signal.

The transmission begins with activation of SEND , which puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit
time after that.

As data bits shift out to the right, zeroes are clocked in from the left. When the MSB of the data byte is at the
output position of the shift register, then the 1 that was initially loaded into the 9" position is just to the left of the
MSB, and all positions to the left of that contain zeroes. This condition flags the TX Control unit to do one last
shift and then deactivate SEND and set TI. This occurs at the 10" divide-by-16 rollover after “write to SBUF.”

Reception is initiated by a 1-to-0 transition detected at RXD. For this purpose, RXD is sampled at a rate of 16
times the established baud rate. When a transition is detected, the divided-by-16 counter is immediately reset,
and 1FFH is written into the input shift register. Resetting the divided-by-16 counter aligns its roll-overs with the
boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into 16ths. At the 7", 8" and 9" counter states of each bit time,
the bit detector samples the value of RXD. The value accepted is the value that was seen in at least 2 of the 3
samples. This is done to reject noise. In order to reject false bits, if the value accepted during the first bit time is
not a 0, the receive circuits are reset and the unit continues looking for another 1-to-0 transition. This is to provide
rejection of false start bits. If the start bit is valid, it is shifted into the input shift register, and reception of the rest
of the frame proceeds.

As data bits come in from the right, “1”s shift out to the left. When the start bit arrives at the left most position
in the shift register,(which is a 9-bit register in Mode 1), it flags the RX Control block to do one last shift, load
SBUF and RBS, and set RI. The signal to load SBUF and RBS8 and to set RI is generated if, and only if, the
following conditions are met at the time the final shift pulse is generated.

1) RI=0 and
2) Either SM2=0, or the received stop bit = 1

If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met, the
stop bit goes into RB8, the 8 data bits go into SBUF, and RI is activated. At this time, whether or not the above
conditions are met, the unit continues looking for a 1-to-0 transition in RXD.

STC MCU Limited. website: www.STCMCU.com 227

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

INTERNAL BUS

Timer 1 or BRT WRITE
Overflow TO

SBUF

ZERO DETECTOR]

»{START SHIFT paTA
TX CONTROL
+16 TXCLOCK TI SEND
SERIAL 4_C(:I
PORT
INTERRUPT
»{ +16
vSAMPLE
1-TO-0 RX CLOCK RI %8[1}19 L
TRANSITION »|START
DETECTOR RX CONTROL gypy
IFFH
A
> DETECTOR
sl .
INPUT SHIFT REG.
RXD (9 BITS)
LOAD

SBUF

READ
SBUF

Mool MMM M M- nm n n nn

WRITE TO SBUF

T |SEND —
DATA TRANSMIT
SHIFT m . n_nm 1 /71 T& n
XD \ /D0 X DI X D2 X D3 X D4 X D5 X D6 X D7 Y STOP BIT
TI START BIT —
RX CLOCK

S | S | | | S | S | A | | N | O |

RXD mirer/ Do X DL X D2 X D3 X D4 X DS X D6 X D7 Y s7opBIT
RECEIVE i1 DETECTOR SAMPLE TIMES

SHIFT nnn n fn n.nf Iin

RI

Serial Port Mode 1

228 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

8.1.2.3 Mode 2: 9-Bit UART with Fixed Baud Rate

11 bits are transmitted through TXD or received through RXD. The frame data includes a start bit(0), 8 data
bits, a programmable 9th data bit and a stop bit(1). On transmit, the 9th data bit comes from TB8 in SCON. On
receive, the 9th data bit goes into RB8 in SCON. The baud rate is programmable to either 1/32 or 1/64 the System
clock cycle.

Baud rate in mode 2 = (2°¥°"/64) x SYSclk

Transmission is initiated by any instruction that uses SBUF as a destination register. The “write to SBUF”
signal also loads TBS into the 9" bit position of the transmit shift register and flags the TX Control unit that a
transmission is requested. Transmission actually happens at the next rollover of divided-by-16 counter. Thus the
bit times are synchronized to the divided-by-16 counter, not to the “write to SBUF” signal.

The transmission begins when /SEND is activated, which puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit shift register to TXD. The first shift pulse occurs one bit
time after that. The first shift clocks a “17”(the stop bit) into the 9" bit position on the shift register. Thereafter,
only “0”s are clocked in. As data bits shift out to the right, “0”s are clocked in from the left. When TB8 of the data
byte is at the output position of the shift register, then the stop bit is just to the left of TBS, and all positions to the
left of that contains “0”s. This condition flags the TX Control unit to do one last shift, then deactivate /SEND and
set TI. This occurs at the 11" divided-by-16 rollover after “write to SBUF”.

Reception is initiated by a 1-to-0 transition detected at RXD. For this purpose, RXD is sampled at a rate of
16 times whatever baud rate has been estabished. When a transition is detected, the divided-by-16 counter is
immediately reset, and 1FFH is written into the input shift register.

At the 7", 8" and 9" counter states of each bit time, the bit detector samples the value of RXD. The value accepted
is the value that was seen in at least 2 of the 3 samples. This is done to reject noise. In order to reject false bits, if
the value accepted during the first bit time is not a 0, the receive circuits are reset and the unit continues looking
for another 1-to-0 transition. If the start bit is valid, it is shifted into the input shift register, and reception of the
rest of the frame proceeds.

As data bits come in from the right, “1”s shift out to the left. When the start bit arrives at the leftmost position
in the shift register,(which is a 9-bit register in Mode-2 and 3), it flags the RX Control block to do one last shift,
load SBUF and RBS, and set RI. The signal to load SBUF and RBS8 and to set RI is generated if, and only if, the
following conditions are met at the time the final shift pulse is generated.:

1) RI=0 and
2) Either SM2=0, or the received 9" data bit = 1

If either of these two conditions is not met, the received frame is irretrievably lost. If both conditions are met,
the stop bit goes into RBS, the first 8 data bits go into SBUF, and RI is activated. At this time, whether or not the

above conditions are met, the unit continues looking for a 1-to-0 transition at the RXD input.

Note that the value of received stop bit is irrelevant to SBUF, RBS or RI.

STC MCU Limited. website: www.STCMCU.com 229

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

INTERNAL BUS

ZERO DETECTOR]

STOP BIT = SHIFT patAl

»|START GEN.
TX CONTROL
+16 TXCLOCK TI SEND
SERIAL 4_G:I
| PORT
: INTERRUPT
»| +16
(SMOD IS PCON.7) "SAMPLE
RX__ RI
1-TO-0 LOAD|»
CLOCK SBUF
TRANSITION »|START
DETECTOR RX CONTROL gpjjpt
IFFH
A
> BIT
»|DETECTOR | L 4
INPUT SHIFT REG.
RXD (9 BITS)
LOAD
SBUF

READ
SBUF

Mol MM N M0 M 0 n 0 n -’

WRITE TO SBUF

T |SEND
DATA TRANSMIT
SHIFT M n . fmn rmn n imn n [Tl
XD \ /D0 X D1 X D2 X D3 X_ D4 X D5 X_ D6 X D7 X _TB8)Y STOP BIT
11 STARTBIT
STOP BIT GEN |
RX CLOCK

. n mnmn n n 7’ " 7q7mo 70

[startBir/ DO X D1 X D2 X D3 X_D4 X D5 X D6 X D7 _XRB8 YSTOP BIT

RXD

RECEIVE
BIT DETECTOR SAMPLE TIMES
SHIFT m . n m . n n T ™n
RI
Serial Port Mode 2

230 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

8.1.2.4 Mode3: 9-Bit UART with Variable Baud Rate

Mode 3 is the same as mode 2 except the baud rate is variable.

Baud rate in mode 3= (2°°" /32) x Timer 1 overflow rate (if AUXR.0/SIBRS=0)
(2*M°" /32) x BRT overflow rate ~ (if AUXR.0/SIBRS=1)

When T1x12=0, Timer 1 overflow rate = SYSclk/12/(256-TH1);
When T1x12=1, Timer 1 overflow rate = SYSclk / (256-TH1);
AND

When BRTx12=0, Dedicated Baud-Rate Timer (BRT) overflow rate = SYSclk/12/(256-BRT);
When BRTx12=1, Dedicated Baud-Rate Timer (BRT) overflow rate = SYSclk / (256-BRT);

In all four modes, transmission is initiated by any instruction that use SBUF as a destination register. Reception
is initiated in mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the
incoming start bit with 1-to-0 transition if REN=1.

STC MCU Limited. website: www.STCMCU.com 231

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

INTERNAL BUS

TIMER 1 or BRT WRITE

OVERFLOW TO
SBUF
SMOD
=1
»{START SHIFT paTA
TX CONTROL
+16 TXCLOCK TI SEND
SERIAL 4_C(:I
PORT
INTERRUPT
» 16
vSAMPLE
1-TO-0 RX CLOCK RI 158 {}1? >
TRANSITION »START
DETECTOR RX CONTROL gypr,
1FFH
i i i A t
> DETECTOR
T el
INPUT SHIFT REG.
RXD (9 BITS)
LOAD

SBUF

READ
SBUF

Mol MMM M M n n n [nn
‘WRITE TO SBUF

T |SEND —
DATA TRANSMIT
SHIFT [N [S N A A A I A
TXD \ / D0 X DI X D2 X D3 X D4 X D5 X D6 X D7_X _TB8)Y STOP BIT
11 STARTBIT I
STOP BIT GEN |
RXCLOCK <16 RESET
N N 1 N | N | N | N |
RECEIVE o [smrrir/ Do X D1 X D2 X D3 X D4 X D5 X D6 X D7 XRB8 YSTOP BIT
BIT DETECTOR SAMPLE TIMES
SHIFT 1 | | Y | O | | M1
RI [
Serial Port Mode 3

232 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

8.1.3 Frame Error Detection

When used for frame error detect, the UART looks for missing stop bits in the communication. A missing bit will
set the FE bit in the SCON register. The FE bit shares the SCON.7 bit with SMO and the function of SCON.7 is
determined by PCON.6(SMODO). If SMODO is set then SCON.7 functions as FE. SCON.7 functions as SM0O
when SMODO is cleared. When used as FE,SCON.7 can only be cleared by software.Refer to the following figure.

l¢ 9-bit data |
\ /D0 X DI X D2 X D3 X D4 X D5 X D6 X D7 X D8 X STOPBIT
START BIT ~ SET FE bit if STOP=0
o\ <]
o+——) SMO to UART mode control

-------- PCON.SMODO

SCON| SMO/FE [sM1 [sSM2 | REN [TBS [RBS | TI [RI |

UART Frame Error Detection

8.1.4 Multiprocessor Communications

Modes 2 and 3 have a special provision for multiproceasor communications. In these modes 9 data bits are
received.The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop
bit is received,the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit
SM2 in SCON. A way to use this feature in multiprocessor systems is as follows.

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address
byte which identifies the target slave.An address byte differs from a data byte in that the 9th bit is 1 in an address
byte and 0 in a data byte.With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however,will
interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed
slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. The slaves that weren’t be-
ing addressed leave their SM2s set and go on about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0,and in Mode 1 can be used to check the validity of the stop bit. In a Mode 1 recep-
tion, if SM2 = 1, the receive interrupt will not be activated unless a vatid stop bit is received.

STC MCU Limited. website: www.STCMCU.com 233

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

8.1.5 Automatic Address Recognition

Automatic Address Recognition is a future which allows the UART to recognize certain addresses in the serial
bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by
eliminating the need for the software to examine every serial address which passes by the serial port. This feature
is enabled by setting the SM2 bit in SCON. In the 9-bit UART modes, Mode 2 and Mode 3, the Receive interrupt
flag(RI) will be automatically set when the received byte contains either the “Given” address or the “Broadcast”
address. The 9-bit mode requires that the 9" information bit is a “1” to indicate that the received information is an
address and not data.

The 8-bit mode is called Mode 1. In this mode the RI flag will be set if SM2 is enabled and the information
received has a valid stop bit following the 8 address bits and the information is either a Given or Broadcast
address.

Mode 0 is the Shift Register mode and SM2 is ignored.

Using the Automatic Address Recognition feature allows a master to selectively communicate with one or more
slaves by invoking the given slave address or addresses. All of the slaves may be contacted by using the broadcast
address. Two special function registers are used to define the slave’s address, SADDR, and the address mask,
SADEN. SADEN is used to define which bits in the SADDR are to be used and which bits are “don’t care”. The
SADEN mask can be logically ANDed with the SADDR to create the “Given” address which the master will
use for addressing each of the slaves. Use of the Given address allows multiple slaves to be recognized which
excluding others. The following examples will help to show the versatility of this scheme :

Slave 0 SADDR = 1100 0000
SADEN = 1111 1101
GIVEN = 1100 00x0

Slave 1 SADDR = 1100 0000
SADEN = 1111 1110
GIVEN = 1100 000x

In the previous example SADDR is the same and the SADEN data is used to differentiate between the two slaves.
Slave 0 requires a “0” in bit 0 and it ignores bit 1. Slave 1 requires a “0” in bit 1 and bit 0 is ignored. A unique
address for slave 0 would be 11000010 since slave 1 requires a “0” in bit 1. A unique address for slave 1 would
be 11000001 since a “1” in bit 0 will exclude slave 0. Both slaves can be selected at the same time by an address
which has bit 0=0 (for slave 0) and bit 1 =0 (for salve 1). Thus, both could be addressed with 11000000.

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:

Slave 0 SADDR = 1100 0000
SADEN = 1111 1001
GIVEN = 1100 0xx0

Slave 1 SADDR = 1110 0000
SADEN = 1111 1010
GIVEN = 1110 0x0x

Slave 2 SADDR = 1110 0000
SADEN = 1111 1100
GIVEN = 1110 00xx

234 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

In the above example the differentiation among the 3 slaves is in the lower 3 address bits.Slave 0 requires that
bit0 = 0 and it can be uniquely addressed by 11100110. Slave 1 requires that bit 1=0 and it can be uniquely
addressed by 11100101. Slave 2 requires that bit 2=0 and its unique address is 11100011. To select Salve 0 and 1
and exclude Slave 2, use address 11100100, since it is necessary to make bit2=1 to exclude Slave 2.

The Broadcast Address for each slave is created by taking the logic OR of SADDR and SADEN. Zeros in this
result are trended as don’t cares. In most cares, interpreting the don’t cares as ones, the broadcast address will be
FF hexadecimal.

Upon reset SADDR and SADEN are loaded with “0”s. This produces a given address of all “don’t cares as well
as a Broadcast address of all “don’t cares”. This effectively disables the Automatic Addressing mode and allows
the microcontroller to use standard 80C51-type UART drivers which do not make use of this feature.

Example: write an program that continually transmits characters from a transmit buffer. If incoming characters
are detected on the serial port, store them in the receive buffer starting at internal RAM location SOH. Assume that
the STC12C5A60S2 series MCU serial port has already been initialized in mode 1.

Solution:
ORG 0030H
MOV RO, #30H ;pointer for tx buffer
MOV Rl, #50H ;pointer for rx buffer
LOOP: JB RI, RECEIVE ;character received?
;yes: process it
JB TI, X ;previous character transmitted ?
;yes: process it
SIMP LOOP ;no: continue checking
TX: MOV A, @RO ;get character from tx buffer
MOV C, P ;put parity bit in C
CPL C ;change to odd parity
MOV ACC.7, C ;add to character code
CLR TI ;clear transmit flag
MOV SBUF, A ;send character
CLR ACC.7 ;strip off parity bit
INC RO ;point to next character in buffer
CINE RO, #50H, LOOP ;end of buffer?
;no: continue
MOV RO, #30H ;yes: recycle
SIMP LOOP ;continue checking
RX: CLR RI ;clear receive flag
MOV A, SBUF ;read character into A
MOV C, P ;for odd parity in A, P should be set
CPL C ;complementing correctly indicates "error"
CLR ACC.7 ;strip off parity
MOV @R1, A ;store received character in buffer
INC R1 ;point to next location in buffer
SIMP LOOP ;continue checking
END

STC MCU Limited. website: www.STCMCU.com 235

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

8.1.6 Buad Rates and Demo Program
The baud rate in Mode 0 is fixed:

SYSclk
Mode 0 Baud Rate = P when AUXR.5/UART_MOx6 =0
SYSclk
or = > when AUXR.5/UART_MOx6 =1

The baud rate in Mode 2 depends on the value of bit SMOD in Special Function Register PCON. If SMOD =0
(which is the value on reset), the baud rate '/, the System clock cycle. If SMOD = 1, the baud rate is '/;, the
System clock cycle .

SMOD

64

Mode 2 Baud Rate = x(SYSclk)

In the STC12C5A60S2, the baud rates in Modes 1 and 3 are determined by Timer1 or BRT overflow rate.
The baud rate in Mode 1 and 3 are fixed:
Mode 1,3 Baud rate = (2°V°° /32) x timer 1 overflow rate (if AUXR.0/SIBRS=0)
= (2™°"/32)x BRT overflow rate ~ (if AUXR.0/S1BRS=1)

Timer 1 overflow rate = (SYSclk/12)/(256 - TH1);
BRT overflow rate = (SYSclk/2) / (256 —BRT), when AUXR.2/BRTx12=1
or = (SYSclk/2/12) /(256 - BRT), when AUXR.2/BRTx12=0

When Timer 1 is used as the baud rate generator, the Timer 1 interrupt should be disabled in this application.
The Timer itself can be configured for either “timer” or “cormter” operation, and in any of its 3 running modes.
In the most typcial applications, it is configured for “timer” operation, in the auto-reload mode (high nibble of
TMOD = 0010B).

One can achieve very low baud rate with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the
Timer to run as a 16-bit timer (high nibble of TMOD = 0001B), and using the Timer 1 interrupt to do a 16-bit
software reload.

The following figure lists various commonly used baud rates and how they can be obtained from Timer 1.

Timer 1
Baud Rate fosc SMOD C/T |Mode Reload
Value
Mode 0 MAX:1IMHZ | 12MHZ X X X X
Mode 2 MAX:375K 12MHZ 1 X X X
Mode 1,3:62.5K 12MHZ 1 0 2 FFH
19.2K 11.059MHZ 1 0 2 FDH
9.6K 11.059MHZ 0 0 2 FDH
4.8K 11.059MHZ 0 0 2 FAH
2.4K 11.059MHZ 0 0 2 F4H
1.2K 11.059MHZ 0 0 2 ESH
137.5 11.986MHZ 0 0 2 1DH
110 6MHZ 0 0 2 72H
110 12MHZ 0 0 1 |FEEBH

Timer 1 Generated Commonly Used Baud Rates

236 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

The following program is an example that domestrates UART communication with independent baud rate
generator.

/% */
;/*¥ --- STC MCU International Limited */
/¥ -—- STC 1T Series MCU UART Communication Demo ---------==-mmmmenun */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% --- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */

;/* article, please specify in which data and procedures from STC */
% */

#include<reg51.h>
#include<intrins.h>

sfr AUXR =0x8E;
sfr AUXRI1 =0xA2;
sfr BRT =0x9C;

sbit MCU_Start LED =P174;
//unsigned char array[9] = {0,2,4,6,8,10,12,14,16};
unsigned char array[9] = {0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C,0x0E, 0x10};

#define RELOAD_COUNT 0xfb //18.432MHz, 12T, SMOD=0, 9600bps

void serial port _initial();

void send_UART (unsigned char);
void UART _Interrupt_Receive(void);
void delay (void);

void display MCU_Start LED (void);

void main(void)
{
unsigned char i=0;
serial_port_initial(); //initialize serial port
display MCU_Start LED(); /lopen LED indicator, MCU start-up
send_UART (0x34); //UART send data
send UART(0xa7);
for(i=0; i<9; i++)

{

H
while(1);

send UART (array([i]);

STC MCU Limited. website: www.STCMCU.com 237

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
/*
void serial port_initial() //use Timer 1 for baud rate generator
{
SCON = 0x50; //0101,0000 8-bit variable baud rate, no odd parity bit
TMOD =0x21; //0011,0001 use Timer 1 for 8-bit auto-reload counter
THI =RELOAD_COUNT; //set Timer 1 auto-reload value
TL1 =RELOAD COUNT;
TR1 =1; //start Timer 1
ES =1; //enable serial port interrupt
EA =1, //set global enable bit
}
*/
void serial port_initial() //use independent baud rate generator for baud rate generator
{
SCON = 0x50; //0101,0000 8-bit variable baud rate, no odd parity bit
BRT =RELOAD COUNT;
AUXR =0xl11;
//TOx12, T1x12, UART MOx6, BRTR, BRTx12, XRAM, S1BRS
//Baud = SYSclk / (256-RELOAD_COUNT)/32/12 (12T mode)
//Baud = SYSclk / (256-RELOAD COUNT)/32 (1T mode)
//Baud = 1, start independent baud rate generator
//S1BRS = 1, UART use independent baud rate generator for baud rate generator
//Timer 1 can be released to timer, counter or clock-output
//AUXR =0x80; //if enable this instruction, serial port would be P1 port rather than P3
ES =1; //enable serial port interrupt
EA =1; //set global enable bit
}
void send UART (unsigned char 1)
{
ES =0; /Iclose serial port interrupt
TI =0; /lclear UART transmit interrupt flag
SBUF =i
while (TI == 0); //wait to finish transmit
TI=0; /lclear UART transmit interrupt flag
ES =1; //enable serial port interrupt
}
void UART Interrupt Receive (void) interrupt 4
{
unsigned char k=0;
ifRI==1)
{
RI=0;
k = SBUF;
send UART (k+1);
}

238

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

else
{
TI=0;
b
b
void delay (void)
{
unsigned int j = 0;
unsigned int g = 0;
for (j=0; j<5; j++)
{
for (g=0; g<50000; g++)
{
nop();
nop();
nop();
b
b
b
void display MCU_Start LED (void)
{
unsigned char i=0;
for (i=0; i<5; i++)
{
MCU_Start LED =0; /lopen MCU-Start-LED indicator
delay();
MCU_Start LED =1; /lclose MCU-Start-LED indicator
delay();
MCU_Start LED =0; /lopen MCU-Start-LED indicator
b
b
STC MCU Limited.

website: www.STCMCU.com 239

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
8.1.7 Demo Programs about UART1 (C and ASM)

1. C program:

/* %/
/* --- STC MCU International Limited */
/* --- STC12C5Axx Series MCU UART (8-bit/9-bit)Demo ---------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */

/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* %/

#include "reg51.h"
#include "intrins.h"

typedef unsigned char BYTE,;

typedef unsigned int WORD;
#define FOSC 18432000L //System frequency
#define BAUD 9600 //UART baudrate
/*Define UART parity mode*/
#define NONE PARITY 0 //None parity
#define ODD_ PARITY 1 //0dd parity
#define EVEN PARITY 2 //Even parity
#define MARK PARITY 3 //Mark parity
#define SPACE PARITY 4 //Space parity
#define PARITYBIT EVEN PARITY //Testing even parity
sbit bit9 = P2"2; //P2.2 show UART data bit9
bit busy;
void SendData(BYTE dat);
void SendString(char *s);
void main()
{
#if (PARITYBIT == NONE_PARITY)
SCON = 0x50; //8-bit variable UART
#elif (PARITYBIT == ODD_PARITY) || (PARITYBIT == EVEN_PARITY) || (PARITYBIT == MARK_PARITY)
SCON = 0Oxda; //9-bit variable UART, parity bit initial to 1
#elif (PARITYBIT == SPACE_PARITY)
SCON = 0xd5; //9-bit variable UART, parity bit initial to 0
#endif

240 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
TMOD = 0x20; //Set Timerl as 8-bit auto reload mode
THI1 =TL1=-(FOSC/12/32/BAUD); //Set auto-reload vaule
TR1 =1, //Timerl start run
ES =1; //Enable UART interrupt
EA =1; //Open master interrupt switch

SendString("STC12C5A60S2\r\nUart Test \r\n");

while(1);
}
/*
UART interrupt service routine
*/
void Uart_Isr() interrupt 4 using 1
{
if (RI)
{
RI=0; //Clear receive interrupt flag
PO = SBUF; //P0O show UART data
bit9 = RBS; //P2.2 show parity bit
§
if (TI)
{
TI=0; //Clear transmit interrupt flag
busy = 0; //Clear transmit busy flag
§
§
/*
Send a byte data to UART
Input: dat (data to be sent)
Output:None
*/
void SendData(BYTE dat)
{
while (busy); //Wait for the completion of the previous data is sent
ACC = dat; //Calculate the even parity bit P (PSW.0)
if (P) //Set the parity bit according to P
{
#if (PARITYBIT == ODD_PARITY)
TB8=0; //Set parity bit to 0
#elif (PARITYBIT == EVEN_PARITY)
TB8=1; //Set parity bit to 1
#endif
§
STC MCU Limited. website: www.STCMCU.com 241

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

else

{
#f (PARITYBIT == ODD_PARITY)

TB8=1; //Set parity bit to 1
#elif (PARITYBIT == EVEN_PARITY)
TB8 =0; //Set parity bit to 0
#endif
H
busy = 1;
SBUF = ACC; //Send data to UART buffer
}
/*
Send a string to UART
Input: s (address of string)
Output:None
*/
void SendString(char *s)
{
while (*s) //Check the end of the string
{
SendData(*s++); //Send current char and increment string ptr
}
}

242 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2. Assembly program:

/* */
/* --- STC MCU International Limited */
/* --- STC12C5Axx Series MCU UART (8-bit/9-bit)Demo ---------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */

/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* %/

;/*Define UART parity mode*/
#define NONE_PARITY 0 //None parity
#define ODD_PARITY //0Odd parity

1

#define EVEN_PARITY 2 //Even parity
#define MARK PARITY 3 //Mark parity
#define SPACE_PARITY 4 //Space parity
#define PARITYBIT EVEN PARITY //Testing even parity
BUSY BIT 20H.0 stransmit busy flag

ORG 0000H

LIMP MAIN

ORG 0023H

LIMP UART_ ISR

ORG 0100H
MAIN:
CLR BUSY
CLR EA
MOV SP, #3FH
#if (PARITYBIT == NONE_PARITY)
MOV SCON, #50H ;8-bit variable UART
#elif (PARITYBIT == ODD_PARITY) || (PARITYBIT == EVEN_PARITY) || (PARITYBIT == MARK_PARITY)
MOV SCON, #0DAH ;9-bit variable UART, parity bit initial to 1
#elif (PARITYBIT == SPACE_PARITY)
MOV SCON, #0D5H ;9-bit variable UART, parity bit initial to 0

#endif

s

STC MCU Limited. website: www.STCMCU.com 243

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412 Fax:86-755-82905966

MOV TMOD, #20H
MOV A, #0FBH
MOV THI, A
MOV TLI, A

SETB TRI
SETB ES
SETB EA

MOV DPTR, #TESTSTR
LCALL SENDSTRING

SIMP $
TESTSTR: ;Test string
DB "STC12C5A60S2 Uart Test !",
*
;UART?2 interrupt service routine
; */
UART ISR:
PUSH ACC
PUSH PSW
JNB RI, CHECKTI
CLR RI
MOV PO, SBUF
MOV C, RB8
MOV P22, C
CHECKTI:
JNB TI, ISR_EXIT
CLR TI
CLR BUSY
ISR_EXIT:
POP PSW
POP ACC
RETI
/*
;Send a byte data to UART
;Input: ACC (data to be sent)
;Output:None
; */
SENDDATA:
JB BUSY, $
MOV ACC, A
JNB P, EVENIINACC

;Set Timerl as 8-bit auto reload mode
;256-18432000/12/32/9600
;Set auto-reload vaule

;Timer] start run
;Enable UART interrupt
;Open master interrupt switch

;Load string address to DPTR
;Send string

0DH,0AH,0

;Check RI bit
;Clear RI bit
;PO show UART data

;P2.2 show parity bit

;Check S2TI bit
;Clear S2T1 bit
;Clear transmit busy flag

;Wait for the completion of the previous data is sent
;Calculate the even parity bit P (PSW.0)
;Set the parity bit according to P

244 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

ODDIINACC:
#if (PARITYBIT == ODD_PARITY)
CLR TB8 ;Set parity bit to 0
#elif (PARITYBIT == EVEN_PARITY)
SETB TBS8 ;Set parity bit to 1
#endif
SIMP PARITYBITOK
EVENIINACC:
#if (PARITYBIT == ODD_PARITY)
SETB TBS8 ;Set parity bit to 1
#elif (PARITYBIT == EVEN_PARITY)
CLR TB8 ;Set parity bit to 0
#endif
PARITYBITOK: ;Parity bit set completed
SETB BUSY
MOV SBUF, A ;Send data to UART buffer
RET
/*
;Send a string to UART
;Input: DPTR (address of string)
;Output:None
; */
SENDSTRING:
CLR A
MOVC A, @A+DPTR ;Get current char
1z STRINGEND ;Check the end of the string
INC DPTR ;increment string ptr
LCALL SENDDATA ;Send current char
SIMP SENDSTRING ;Check next
STRINGEND:
RET
END
STC MCU Limited. website: www.STCMCU.com 245

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

8.2 Secondary UART (S2)

S2 is the secondary UART of STC12C5A60S2 that its function is fully the same with the major UART described
in last section and only with the exception that no enhanced function included. An additional baud-rate generator
(BRT) is available in S2 to simplify the baud-rate generation and release Timerl for use in other purposes. The
additional baud-rate generator can also be configured to provide a programmable clock output on P1.0. Combined
with Timer1 and Timer0, STC12C5A60S2 will be able to provide three individual programmable clock outputs
on three general-purpose I/O pins, respectively.

8.2.1 Special Function Registers about S2 (UART?2)

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
S2CON S2 Control 9AH [s2sMo|s2sM1|s2sM2|S2REN|S2TB8|S2RBS| S2T1 | S2RI | 0000 0000B
S2SBUF S2 Serial Buffer 9BH XXXX XXXxB
BRT Baud-Rate Timer 9CH 0000 0000B
AUXR Auxiliary register SEH TOx12|T1x12|UART_MOx6 BRTR|SZSMOD BRTx12 EXTRAM|SIBRS 0000 0000B
IE Interrupt Enable A8H EA |ELVD |EADC| ES | ET1 | EX1 | ETO [EX0 |0x00 0000B
IE2 Interrupt Enable 2 | AFH - - - A - - | ESPT| ES2 | xxxx xx00B
P2 2rd Interrupt Priority| oo -] | - 1T -1 -1 - [psei] ps2 xx xx00B
Low register
PR 2rd Interrupt.Prlorlty B6H -] | - | -1 - | - [rsem]|rs2n cx xx00B
Low register
AUXR1 | Auxiliary register] | A2H | - |pca_p4|sPi_p4|s2 P4| GF2 | ADRI| - | DPS |0000 0000B
There are several special function registers which should be understood by users before using the secondary
UART.
1. Serial port 2 Control register: S2CON (Non bit-addressable)
SFR name | Address | bit B7 B6 B5 B4 B3 B2 B1 BO
S2CON 9AH | name | S2SMO | S2SM1 | S2SM2 | S2REN | S2TBS | S2RB8 | S2TI | S2RI

S2SM0,S2SM1 : Serial Port 2 Mode Select Bit 0/1.

S2SMO [S2SM1 | Operation Modes Description Baud Rate
0 0 Mode 0 8-bit shift register SYSclk/12
0 1 Mode 1 8-bit UART, baud-rate variable (2%M°P/32) x (BRT overflow rate)
1 0 Mode 2 9-bit UART, baud-rate fixed (2%M°/64) x SYSclk
1 1 Mode 3 9-bit UART, baud-rate variable | (2°*°°"/32) x (BRT overflow rate)

If BRTx12 = 0, BRT overflow rate = SYSclk / 12 / (256-BRT);
If BRTx12 = 1, BRT overflow rate = SYSclk / (256-BRT);

246

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

S2SM2 : Enable the automatic address recognition feature in mode 2 and 3. If S2SM2=1,S2 RI will not be
set unless the received 9th data bit is 1, indicating an address, and the received byte is a
Given or Broadcast address. In model, if S2SM2=1 then RI will not be set unless a valid stop
Bit was received, and the received byte is a Given or Broadcast address.

S2REN : Enable the serial port reception. When set, enable serial reception. When clear, disable the secondary
serial port reception.

S2TB8 : The 9th data bit which will be transmitted in mode 2 and 3.

S2RB8 : In mode 2 and 3, the received 9th data bit will go into this bit.
S2TI : Transmit interrupt flag. After a transmitting has been finished, the hardware will set this bit.
S2RI : Receive interrupt flag. After reception has been finished, the hardware will set this bit.

2. Serial port 2 Data Buffer register: S2BUF

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
S2BUF 9BH | name

It is used as the buffer register in transmission and reception. This SFR accesses two registers; a transmit shift reg-
ister and a receive latch register. When data is written to S2BUF, it goes to the transmit shift register and is held
for serial transmission. Writing a byte to S2BUF initiates the transmission. A read of S2BUF returns the contents
of the receive latch.

3. BRT: Dedicated Baud-Rate Timer register (Non bit-Addressable)
SFR name |Address| bit B7 B6 BS5 B4 B3 B2 Bl BO
BRT 9CH [name

It is used as the reload register for generating the baud-rate of the UART.
4. AUXR: Auxiliary register (Non bit-addressable)

SFR name | Address | bit B7 B6 BS5 B4 B3 B2 B1 BO
AUXR 8EH name |[TOx12|T1x12| UART MOx6 [BRTR [S2SMOD| BRTx12 |[EXTRAM|SIBRS

TO0x12 : Timer 0 clock source bit.

0 : The clock source of Timer 0 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 0 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
T1x12 : Timer 1 clock source bit.

0 : The clock source of Timer 1 is SYSclk/12. It will compatible to the traditional 80C51 MCU

1 : The clock source of Timer 1 is SYSclk/1. It will drive the TO faster than a traditional 80C51 MCU
UART MOx6 : Baud rate select bit of UART1 while it is working under Mode-0

0 : The baud-rate of UART in mode 0 is SYSclk/12.

1 : The baud-rate of UART in mode 0 is SY Sclk/2.
BRTR : Dedicated Baud-Rate Timer run control bit.

0 : The baud-rate generator is stopped.

1 : The baud-rate generator is enabled.
S2SMOD : the baud-rate of UART2 double contol bit.

0 : Default. The baud-rate of UART2 (S2) is not doubled.

1 : The baud-rate UART2 (S2) is doubled.
BRTx12 : Dedicated Baud-Rate Timer counter control bit.

0 : The baud-rate generator is incremented every 12 system clocks.

1 : The baud-rate generator is incremented every system clock.

STC MCU Limited. website: www.STCMCU.com 247

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

EXTRAM : Internal / external RAM access control bit.
0 : On-chip auxiliary RAM is enabled and located at the address 0x0000 to Ox03FF.
For address over 0x03FF, off-chip expanded RAM becomes the target automatically.
1 : On-chip auxiliary RAM is always disabled.
S1BRS : the baud-rate generator of UART1 select bit.
0 : Default. Select Timer 1 as the baud-rate generator of UART1
1 : Timer 1 is replaced by the independent baud-rate generator which is selected as the baud-rate of UART. In
other words, timer 1 is released to use in other functions.

For STC12C5A60S2 series, Secondary UART (S2) only can select Dedicated Baud-Rate Timer as its baud-rate
generator. While UART1 not only can select Dedicated Baud-Rate Timer, but also can select Timer 1 as its baud-
rate generator.

5. Registers related with UART?2 (S2) interrupt : IE, IE2, IP2 and IP2H

IE: Interrupt Enable Rsgister (Bit-addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
IE A8H name EA ELVD | EADC| ES ET1 | EX1 | ETO EXO0

EA : disables all interrupts.
If EA = 0,no interrupt will be acknowledged.
If EA =1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.
IE2: Interrupt Enable 2 Rsgister (Non bit-addressable)
SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
1E2 AFH name - - - - - - ESPI ES2
ES2 : Serial port 2 (UART2) interrupt enable bit.

If ES2 =0, UART2 interrupt will be diabled.
If ES2 =1, UART2 interrupt is enabled.

IP2H: Interrupt Priority High Register (Non bit-addressable)
SFR name | Address bit B7 B6 BS5 B4 B3 B2 B1 BO

IP2H B6H name - - - - - - PSPIH | PS2H
IP2: Interrupt Priority Register (Non bit-addressable)
SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
1P2 B5H name - - - - - - PSPI PS2

PSPIH, PSPI: SPI interrupt priority control bits.
if PSPIH=0 and PSPI=0, SPI interrupt is assigned lowest priority (priority 0).
if PSPIH=0 and PSPI=1, SPI interrupt is assigned lower priority (priority 1).
if PSPIH=1 and PSPI=0, SPI interrupt is assigned higher priority (priority 2).
if PSPIH=1 and PSPI=1, SPI interrupt is assigned highest priority (priority 3).

PS2H, PS2 : Serial Port 2 (UART?2) interrupt priority control bits.
if PS2H=0 and PS2=0, UART?2 interrupt is assigned lowest priority (priority 0).
if PS2H=0 and PS2=1, UART?2 interrupt is assigned lower priority (priority 1).
if PS2H=1 and PS2=0, UART? interrupt is assigned higher priority (priority 2).
if PS2H=1 and PS2=1, UART2 interrupt is assigned highest priority (priority 3).

248 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

6. Auxiliary 1 register: AUXR1

Register AUXRI1 is used to select whether PCA/PWM/SPI/UART?2 function is on P1 port or P4 port

Mnemonic | Address | bit 7 6 5 4 3 2 1 0
AUXRI1 A2H | name - PCA P4 | SPI P4 | S2 P4 | GF2| ADRJ| - | DPS
PCA P4
0 : Default. The PCA function is on P1[4:2]

1

SPI P4
: Default. The SPI function is on P1[7:4]
: The SPI function on P1[7:4] is switched to P4[3:0].

. The PCA function on P1[4:2] is switched to P4[3:1].

ECI is switched from P1.2 to P4.1
PCAO0/PWMO is switched from P1.3 to P4.2
PCA1/PWMI is switched from P1.4 to P4.3

SCLK is switched from P1.7 to P4.3
MOSI is switched from P1.6 to P4.2
MISO is switched from P1.5 to P4.1
SS is switched from P1.4 to P4.0

S2 P4
0 : Default. the UART2(S2) function is on P1[3:2]
1 : The UART2(S2) function on P1[3:2] is switched to P4[3:2].
TxD2 is switched from P1.3 to P4.3
RxD2 is switched from P1.2 to P4.2
GF2 : General Flag. It can be used by software.
ADRJ
0 : The 10-bit conversion result of ADC is arranged as {ADC RES[7:0], ADC RESL[1:0]}.
1 : The 10-bit conversion result is right-justified, {ADC RES[1:0], ADC RESL[7:0]}.
DPS
0 : Default. DPTRO is selected as Data pointer.
1 : The secondary DPTR is switched to use.
STC MCU Limited. website: www.STCMCU.com 249

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

8.2.3 UART?2 Operation Modes

The serial port 2 (UART?2) can be operated in 4 different modes which are configured by setting S2SM0 and
S2SM1 in SFR S2CON. Mode 1, Mode 2 and Mode 3 are asynchronous communication. In Mode 0, UART?2 is
used as a simple shift register.

8.2.3.1 Mode 0: 8-bit Shift Register

Serial data enters and exits through RXD2/P1.2(RXD2/P4.2). TXD2/P1.3(TXD2/P4.3) outputs the shift clock.
Eight data bits are transmitted/received with the LSB first. The baud rate is fixed at 1/12 the system clock.
Regardless of baud-rate generation, the operation in Mode 0 for S2 UART is the same as the standard UART in
Mode 0.

Baud-Rate in mode 0 = SYSclk / 12

8.2.3.2 Mode 1: 8-bit UART?2 with Variable Baud-Rate

10 bits are transmitted through TXD2/P1.3(TXD2/P4.3) or received through RXD2/P1.2(RXD2/P4.2). The
frame data includes a start bit(0), 8 data bits and a stop bit(1). One receive, the stop bit goes into S2RB8 in SFR —
S2CON. The baud rate is determined by the BRT overflow rate. Regardless of baud-rate generation, the operation
in Mode 1 for S2 UART is the same as the standard UART in Mode 1.

Baud rate in mode 1 = (2°*°"/32) x BRT timer overflow rate
If BRTx12 = 0, BRT timer overflow = SYSclk / 12 / (256-BRT)
If BRTx12 = 1, BRT timer overflow = SYSclk / (256-BRT)

8.2.3.3 Mode 2: 9-bit UART?2 with Fixed Baud-Rate

11 bits are transmitted through TXD2/P1.3(TXD2/P4.3) or received through RXD2/P1.2(RXD2/P4.2). The
frame data includes a start bit(0), 8 data bits, a programmable 9th bit and a stop bit(1). On transmit, the 9th data
bit comes from S2TB8 in S2CON. On receive, the 9th data bit goes into S2RB8 in S2CON. The baud rate is
programmable to either 1/32 or 1/64 the system clock cycle.

The operation in Mode 2 for S2 UART is the same as the standard UART in Mode 2.

Baud rate inmode 2 = (2%°"°%/64) x SYSclk

8.2.3.4 Mode 3: 9-bit UART2 with Variable Baud-Rate
Mode 3 is the same as mode 2 except the baud rate is variable.
Baud rate in mode 3 = (25V°" /32) x BRT timer overflow rate

If BRTx12 = 0, BRT timer overflow = SYSclk / 12 / (256-BRT)
If BRTx12 = 1, BRT timer overflow = SYSclk / (256-BRT)

* When S2_P4 bit in AUXRI register is set, the function of UART? is redirected to P4.2 for RXD2 and
P4.3 for TXD2.

250 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

8.2.4 Demo Program about Secondary UART

1. Demo program 1

C program

/* */
/* --- STC MCU International Limited */
/* --- STC12C5Axx Series MCU UART?2 (8-bit/9-bit)Demo -------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"
#include "intrins.h"

typedef unsigned char BYTE;

typedef unsigned int WORD;

#define FOSC 18432000L //System frequency
#define BAUD 115200 //UART baudrate
/*Define UART parity mode*/

#define NONE PARITY 0 //None parity
#define ODD PARITY 1 //0dd parity
#define EVEN PARITY 2 //Even parity
#define MARK PARITY 3 //Mark parity
#define SPACE PARITY 4 //Space parity

#define PARITYBIT EVEN_PARITY //Testing even parity
/*Declare SFR associated with the UART2 */

sfr AUXR = 0x8e; //Auxiliary register

sfr S2CON = 0x9a; //UART?2 control register
sfr S2BUF = 0x9b; //UART?2 data buffer

sfr BRT =0x9c; //Baudrate generator

sfr IE2 = Oxaf; //nterrupt control 2
#define S2RI 0x01 //S2CON.0

#define S2TI 0x02 //S2CON.1

#define S2RB8 0x04 //S2CON.2

#define S2TB8 0x08 //S2CON.3

bit busy;

void SendData(BYTE dat);
void SendString(char *s);

STC MCU Limited. website: www.STCMCU.com

251

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412 Fax:86-755-82905966

void main()

{
#if (PARITYBIT == NONE_PARITY)

//8-bit variable UART

= EVEN_PARITY) || (PARITYBIT = MARK_PARITY)

//9-bit variable UART, parity bit initial to 1

//9-bit variable UART, parity bit initial to 0

//Set auto-reload vaule of baudrate generator
//Baudrate generator work in 1T mode
//Enable UART2 interrupt

//Open master interrupt switch

//Clear receive interrupt flag
//PO show UART data
//P2.2 show parity bit

//Clear transmit interrupt flag
//Clear transmit busy flag

S2CON = 0x50;
#elif (PARITYBIT == ODD_PARITY) || (PARITYBIT =
S2CON = 0xda;
#elif (PARITYBIT == SPACE_PARITY)
S2CON = 0xd5;
#endif
BRT = -(FOSC/32/BAUD);
AUXR = 0x14;
IE2 = 0x01;
EA=1;
SendString("STC12C5A60S2\r\nUart2 Test \r\n");
while(1);
¥
/*
UART?2 interrupt service routine
*/
void Uart2() interrupt 8 using 1
{
if (S2CON & S2RI)
{
S2CON &= ~S2RI,
PO = S2BUF;
P2 = (S2CON & S2RBg);
¥
if (S2CON & S2TI)
{
S2CON &= ~S2TI,;
busy = 0;
¥
¥
/*

Send a byte data to UART
Input: dat (data to be sent)

Output:None
*/

252 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

void SendData(BYTE dat)

{
while (busy); //Wait for the completion of the previous data is sent
ACC = dat; //Calculate the even parity bit P (PSW.0)
if (P) //Set the parity bit according to P
{
#if (PARITYBIT == ODD_PARITY)
S2CON &= ~S2TBS; //Set parity bit to 0
#elif (PARITYBIT == EVEN_PARITY)
S2CON |= S2TBS; //Set parity bit to 1
#endif
¥
else
{
#if (PARITYBIT == ODD_PARITY)
S2CON |= S2TBS; //Set parity bit to 1
#elif (PARITYBIT == EVEN_PARITY)
S2CON &= ~S2TBS; //Set parity bit to 0
#endif
¥
busy = 1;
S2BUF = ACC; //Send data to UART2 buffer
¥
/*
Send a string to UART
Input: s (address of string)
Output:None
*/
void SendString(char *s)
{
while (*s) //Check the end of the string
{
SendData(*s++); //Send current char and increment string ptr
¥
¥

STC MCU Limited. website: www.STCMCU.com 253

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

Assembly program

/*

/* --—- STC MCU International Limited

/* --- STC12C5Axx Series MCU UART?2 (8-bit/9-bit) Demo ------- */

/* --- Mobile: (86)13922809991
/* --- Fax: 86-755-82905966
/* --- Tel: 86-755-82948412
/* --- Web: www.STCMCU.com

/* If you want to use the program or the program referenced in the */

/* article, please specify in which data and procedures from STC */

/*

;/*Define UART parity mode*/

#define NONE PARITY
#define ODD PARITY
#define EVEN PARITY
#define MARK PARITY
#define SPACE PARITY

0
1
2
3
4

//None parity
//0dd parity
//Even parity
//Mark parity
//Space parity

#define PARITYBIT EVEN_PARITY //Testing even parity

;/*Declare SFR associated with the UART?2 */

AUXR EQU 08EH
S2CON EQU 09AH
S2BUF EQU 09BH
BRT EQU 09CH
1E2 EQU 0AFH
S2RI EQU 01H
S2TI EQU 02H
S2RB8 EQU 04H
S2TB8 EQU 08H
BUSY BIT 20H.0

ORG 0000H

LIMP MAIN

ORG 0043H

LIMP UART2 ISR

;Auxiliary register
;UART?2 control register
;UART?2 data buffer
;Baudrate generator
;Interrupt control 2

;S2CON.O
;S2CON.1
;S2CON.2
;S2CON.3

stransmit busy flag

254 STC MCU Limited.

website:

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
ORG 0100H
MAIN:
CLR BUSY
CLR EA
MOV SP, #3FH
#if (PARITYBIT == NONE_PARITY)
MOV S2CON, #50H ;8-bit variable UART
#elif (PARITYBIT == ODD_PARITY) || (PARITYBIT == EVEN_PARITY) || (PARITYBIT == MARK PARITY)
MOV S2CON, #0DAH ;9-bit variable UART, parity bit initial to 1
#elif (PARITYBIT == SPACE_PARITY)
MOV S2CON, #0DSH ;9-bit variable UART, parity bit initial to 0
#endif
MOV BRT, #O0FBH ;Set auto-reload vaule of baudrate generator (256-18432000/32/115200)
MOV AUXR, #l4H ;Baudrate generator work in 1T mode
ORL 1E2, #01H ;Enable UART?2 interrupt
SETB EA
MOV DPTR, #TESTSTR ;Load string address to DPTR
LCALL SENDSTRING ;Send string
SIMP §
TESTSTR: ;Test string
DB "STC12C5A60S2 Uart2 Test !", 0DH,0AH,0
*
;UART?2 interrupt service routine
; */
UART2 ISR:
PUSH ACC
PUSH PSW
MOV A, S2CON ;Read UART?2 control register
INB ACC.0, CHECKTI ;Check S2RI bit
ANL S2CON, #NOT S2RI ;Clear S2RI bit
MOV PO, S2BUF ;PO show UART data
ANL A, #S2RBS8 ;Mask S2RB8
MOV P2, A ;P2.2 show parity bit
CHECKTI: R
MOV A, S2CON ;Read UART?2 control register
INB ACC.1, ISR_EXIT ;Check S2T1 bit
ANL S2CON, #NOT S2TI ;Clear S2TI bit
CLR BUSY ;Clear transmit busy flag
ISR_EXIT:
POP PSW
POP ACC
RETI
STC MCU Limited. website: www.STCMCU.com 255

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
S
;Send a byte data to UART
;Input: ACC (data to be sent)
;Output:None
; */
SENDDATA:
JB BUSY, $;Wait for the completion of the previous data is sent
MOV ACC, A ;Calculate the even parity bit P (PSW.0)
INB P, EVENIINACC ;Set the parity bit according to P
ODDIINACC:

#if (PARITYBIT == ODD_PARITY)
ANL S2CON, #NOT S2TB8
#elif (PARITYBIT == EVEN_PARITY)
ORL S2CON, #S2TB8
#endif
SIMP PARITYBITOK
EVENIINACC:
#if (PARITYBIT == ODD_PARITY)
ORL S2CON, #S2TB8
#elif (PARITYBIT == EVEN_PARITY)
ANL S2CON, #NOT S2TB8

#endif
PARITYBITOK:
SETB BUSY
MOV S2BUF, A
RET
S
;Send a string to UART
;Input: DPTR (address of string)
;Output:None
; */
SENDSTRING:
CLR A
MOVC A, @A+DPTR
Iz STRINGEND
INC DPTR
LCALL SENDDATA
SIMP SENDSTRING
STRINGEND:
RET
END

;Set parity bit to 0

;Set parity bit to 1

;Set parity bit to 1
;Set parity bit to 0
;Parity bit set completed

;Send data to UART2 buffer

;Get current char

;Check the end of the string
;increment string ptr

;Send current char

;Check next

256 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2. Demo program 2

C program

/* */
/* --- STC MCU International Limited */
/* --- STC12C5Axx Series MCU UART?2 communicaton Demo ----*/
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
[* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */

/* */
#include<reg52.h>

#include<intrins.h>

sfr S2CON = 0x9A;

//S2SMO0, S2SM 1, S2SM2, S2REN, S2TBS8, S2RB8, S2TI, S2RI
sfr 1E2 = 0xAF;

11X, X, X, X, X, X, ESPI, ES2

sfr S2BUF = 0x9B;

sfr AUXR =0x8E;

sfr BRT = 0x9C;

sfr IAP_CONTR = 0xC7,

sfr CCON =0xDg;

sfr CMOD = 0xD9;

sfr CL = 0xE9;

sfr CH = 0xF9;

sfr CCAPOL = 0xEA;

sfr CCAPOH = 0xFA;

sfr CCAPMO = 0xDA;

sfr CCAPMI1 = 0xDB;

sfr CR = 0xDE;

sbit MCU_Start LED =PI1"7,
sbit S2_Interrupt Receive LED =P174;
/funsigned char self command array[4] = {0x22, 0x33, 0x44, 0x55};

define RELOAD _COUNT O0xfb //18.432MHz, 12T, SMOD=0, 9600bps
//# define RELOAD_COUNT 0xf6 //18.432MHz, 12T, SMOD=0, 4800bps
//# define RELOAD _COUNT O0xec //18.432MHz, 12T, SMOD=0, 2400bps
//# define RELOAD_COUNT 0xd8 //18.432MHz, 12T, SMOD=0, 1200bps

void serial port_one_initial();
void send UART_one(unsigned char);
void UART one Interrupt Receive(void);

STC MCU Limited. website: www.STCMCU.com 257

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

void serial port two_initial();
void send UART two(unsigned char);
void UART two_Interrupt Receive(void);

void soft reset to ISP Monitor(void);
void delay(void);

void display MCU_Start LED(void);
void send PWM(void);

void main(void)
{

unsigned int array_point = 0;

unsigned char xdata Test _array ont[512] =

{
0x00, 0x01 0x02, 0x03,
0x08, 0x09, 0x0a, 0x0b,
0x10, 0x11, 0x12, 0x13,
0x18, 0x19, Ox1a, 0x1b,
0x20, 0x21, 0x22, 0x23,
0x28, 0x29, 0x2a, 0x2b,
0x30, 0x31, 0x32, 0x33,
0x38, 0x39, 0x3a, 0x3b,
0x40, 0x41, 0x42, 0x43,
0x48, 0x49, Ox4a, 0x4b,
0x50, 0x51, 0x52, 0x53,
0x58, 0x59, 0x5a, 0x5b,
0x60, 0x61, 0x62, 0x63,
0x68, 0x69, 0x6a, 0x6b,
0x70, 0x71, 0x72, 0x73,
0x78, 0x79, 0x7a, 0x7b,
0x80, 0x81, 0x82, 0x83,
0x88, 0x89, 0x8a, 0x8b,
0x90, 0x91, 0x92, 0x93,
0x98, 0x99, 0x9a, 0x9b,
0xa0, Oxal, 0Oxa2, 0xa3,
0xa8, 0xa9, Oxaa, Oxab,
0xb0, 0xbl, 0xb2, 0xb3,
0xbs, 0xb9, Oxba, 0xbb,
0xcO0, Oxcl, 0xc2, 0xc3,
0xc8, 0xc9, Oxca, Oxcb
0xdo, 0xdl, 0xd2, 0xd3,
0xds, 0xd9, Oxda, 0xdb,
0xe0, Oxel, 0Oxe2, 0xe3,
0xe8, 0xe9, Oxea, Oxeb,
0x10, 0xf1, 0xf2, 0xf3,
0xf8, 0x19, Oxfa, 0xfb,

0x04

0x0c,
0x14,
Oxlc,
0x24,
0x2c,
0x34,
0x3c,
0x44,
Ox4c,
0x54,
0x5c,
0x64,
0x6¢,
0x74,
0x7c,
0x84,
0x8c,
0x94,
0x9c,
Oxa4,
Oxac,
0xb4,
Oxbc,
0xc4,
,0xcc,
0xd4,
Oxdc,
Oxe4,
Oxec,
0xf4

Oxfc,

0x05,
0x0d,
0x15,
Ox1d,
0x25,
0x2d,
0x35,
0x3d,
0x45,
0x4d,
0x55,
0x5d,
0x65,
0x6d,
0x75,
0x7d,
0x85,
0x8d,
0x95,
0x9d,
0xa5,
Oxad,
0xb5,
0xbd,
0xc5,
Oxcd,
0xd5,
0xdd,
0xe5,
Oxed,
0xf5,
Oxfd,

0x06,
0x0e,
0x16,
Oxle,
0x26,
0x2e,
0x36,
0x3e,
0x46,
Ox4e,
0x56,
0x5e,
0x66,
0x6e,
0x76,
0x7e,
0x86,
0x8e,
0x96,
0x9e,
0xa6,
Oxae,
0xb6,
Oxbe,
0xc6,
Oxce,
0xde,
Oxde,
0xeo6,
Oxee,
0xf6,
Oxfe,

0x07,
0x0f,
0x17,
0x1f,
0x27,
0x2f,
0x37,
0x3f

0x47,
0x4f,
0x57,
0x5f,
0x67,
0x6f,
0x77,
0x7f,
0x87,
0x8f,
0x97,
0x9f,
Oxa7,
Oxaf,
0xb7,
0xbf,
0xc7,
Oxcf,
0xd7
Oxdf,
0xe7,
Oxef,
0xf7,
Oxff,

258 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Oxft, Oxfe, 0xfd, Oxfc, 0xfb, Oxfa, 0x19, 0xf8,
0xf7, 0xfo, 0xf5, 0xf4, 0xf3, 0xf2, 0xfl, 0xf0,
Oxef, Oxee, Oxed, Oxec, Oxeb, Oxea, 0xe9, 0xe8,
0xe7, 0xe6, 0xe5, Oxe4, 0xe3, 0xe2, Oxel, 0xe0,
0xdf, Oxde, 0xdd, Oxdc, 0xdb, Oxda, 0xd9, 0xds,
0xd7, 0xd6, 0xd5, 0xd4, 0xd3, 0xd2, 0xdl, 0xdo,
Oxcf, Oxce, Oxcd, Oxcc, 0xcb, Oxca, 0xc9, 0xc8,
0xc7, 0xco, 0xc5, 0xc4, 0xc3, 0xc2, Oxcl, 0xc0,
0xbf, Oxbe, 0xbd, Oxbc, 0xbb, Oxba, 0xb9, 0xbs,
0xb7, 0xb6, 0xb5, 0xb4, 0xb3, 0xb2, 0xbl, 0xb0,
Oxaf, Oxae, Oxad, Oxac, Oxab, Oxaa, 0xa9, Oxa8,
Oxa7, 0xa6, Oxa5s, Oxa4, Oxa3, Oxa2, Oxal, 0xa0,
0x9f, 0x9e, 0x9d, 0x9c, 0x9b, 0x9a, 0x99, 0x98,
0x97, 0x96, 0x95, 0x94, 0x93, 0x92, 0x91, 0x90,
0x8f, 0x8e, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88,
0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80,
0x7f, 0x7e, 0x7d, 0x7c, 0x7b, 0x7a, 0x79, 0x78,
0x77, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71, 0x70,
0x6f, 0x6e, 0x6d, 0x6¢, 0x6b, 0x6a, 0x69, 0x68,
0x67, 0x66, 0x65, 0x64, 0x63, 0x62, 0x61, 0x60,
0x5f, 0x5e, 0x5d, 0x5c, 0x5b, 0x5a, 0x59, 0x58,
0x57, 0x56, 0x55, 0x54, 0x53, 0x52, 0x51, 0x50,
0x4f, Ox4e, 0x4d, 0x4c, 0x4b, 0x4a, 0x49, 0x48,
0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0x41, 0x40,
0x3f, 0x3e, 0x3d, 0x3c, 0x3b, 0x3a, 0x39, 0x38,
0x37, 0x36, 0x33, 0x34, 0x33, 0x32, 0x31, 0x30,
0x2f, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28,
0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20,
Ox1f, Oxle, Ox1d, Oxlc, 0x1b, Ox1a, 0x19, 0x18,
0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,
0x07, 0x06, 0x03, 0x04, 0x03, 0x02, 0x01, 0x00

15
unsigned char i=0;
serial port_one_initial(); //nitialize the major UART
seial port_two _initial(); //Initialize the secondary UART(S2)
display MCU_Start LED(); //Open MCU-Start-LED, MCU start to work
send UART two(0x55); //send data—O0x55 by the secondary UART
send UART two(0Oxaa); //send data—Oxaa by the secondary UART
for (array_point = 0; array _point<512; array point++)
{

send UART two (Test array_one[array point]);
§
send UART one(0x34); //send data—O0x34 by the major UART
send UART one(0xa7); //send data—O0xa7 by the major UART

STC MCU Limited. website: www.STCMCU.com 259

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

for (array point = 0; array point<512; array point++)

{
send UART one (Test array one[array point]);
}
send PWM(); //6kHz PWM, 50% duty
while(1)

}

void serial_port one initial()

{

SCON = 0x50; //0101,0000 8-bit variable baud rate, no parity bit
// TMOD =0x21; //0011, 0001 set Timer 1 for 8-bit auto-reload mode
// TH1 =RELOAD_ COUNT; //Load Timer 1 auto-reload value
/! TL1 =RELOAD_COUNT;
// TR1 =1, // Enable Timer 1
BRT =RELOAD_COUNT;
/! BRTR =1,S1BRS =1, EXTRAM =1, ENABLE EXTRAM
AUXR =0x11; // T0x12, T1x12, UART _MO0x6, BRTR, S2SMOD, BRTx12, EXTRAM, SIBRS
ES =1; // Enable serial port interrupt
EA =1; // Set the global enable bit

}

void serial port two initial()

{
/lsfr SCON = 0x98;

//SMO, SM1, SM2, REN, TBS, RBS, TI, RI

//sfr S2CON = 0x9A,;

//S2SMO0, S2SM1, S2SM2, S2REN, S2TBS, S2RBS, S2TI, S2RI
//sfr - S2BUF = 0x9B;

//sfr 1E2 = 0xAF;

/IX, X, X, X, X, X, ESPI, ES2

S2CON = 0x50; //0101, 0000 8-bit variable baud rate, no parity bit,

BRT =RELOAD_COUNT;
/l BRTR =1, SIBRS =1, EXTRAM =0, ENABLE EXTRAM

AUXR =0x11; //T0x12, T1x12, UART_MO0x6, BRTR, S2SMOD, BRTx12, EXTRAM, S1BRS
// ES =1; // Enable the major UART interrupt
/l ES2 =1,

1E2 =0x01; // Enable the secondary UART interrupt, ES2=1

EA =1; // Set the global enable bit

260 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
void send_UART_one(unsigned char 1)
{
ES =0; //Disable serial port interrupt
TI =0; //Clear serial port transmit interrupt flag
SUBF =i
while (TI ==0); //Wait to finish transmitting
TI =0; // Clear serial port transmit interrupt flag
ES =1; //Enable serial port interrupt
}
void send UART_two(unsigned char i)
{
//sfr - SCON = 0x98;
//SM0, SM1, SM2, REN, TB8, RBS, TI, RI
//sfr S2CON = 0x9A,;
//S2SMO0, S2SM1, S2SM2, S2REN, S2TB8, S2RBS, S2TI, S2RI
//sfr - S2BUF = 0x9B;
//sfr 1E2 = 0xAF;
11X, X, X, X, X, X, ESPI, ES2
unsigned char temp = 0;
// ES =0; // Disable the major UART interrupt
1E2 = 0x00; // Disable the secondary UART interrupt, ES2=0
// TI =0; //Clear the major UART transmit interrupt flag
S2CON = S2CON & 0xFD; //B'11111101,Clear the secondary UART transmit interrupt flag
/l SBUF =i;
S2BUF =i;
// while(TI == 0); //Wait to finish transmitting
do
{
temp = S2CON;
temp = temp & 0x02;
}while(temp == 0);
// TI =0; //Clear the major UART transmit interrupt flag
S2CON = S2CON & 0xFD; //B' 11111101,Clear the secondary UART transmit interrupt flag
// ES =1; // Enable the major UART interrupt
/l ES2 =1,
1E2 =0x01; // Enable the secondary UART interrupt, ES2=1
}
void UART one_Interrupt_Receive(void) interrupt 4
{
unsigned char k= 0;
if (RI==1)
{
RI=0;
k =SBUF;
STC MCU Limited. website: www.STCMCU.com 261

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

if (k==Self Define ISP Download Command) //Self-define download-command
{ delay(); // to delay 1s is enough
delay(); // to delay 1s is enough
soft reset to ISP_Monitor(); //soft-reset to [ISP-monitor
iendﬁUARTﬁone(kJr 1);
§
else
{
TI =0;
§

}
void UART two_Interrupt Receive(void) interrupt 8
{
//sfr SCON =0x98;
//ISMO0, SM1, SM2, REN, TBS, RBS8, TI, RI
/Isfr S2CON = 0x9A;
//S2SMO0, S2SM 1, S2SM2, S2REN, S2TBS8, S2RB8, S2TI, S2RI
//sfr S2BUF = 0x9B;
/Isfr 1E2 = 0xAF;
/1X, X, X, X, X, X, ESPI, ES2
unsigned char k= 0;
k =S2CON;
k=k & 0x01;
/[if (S2RT == 1)
if (k==1)
{
//IR1=0;
S2CON = S2CON & 0xFE; //1111,1110
S2 Interrupt Receive LED = 0;
k = S2BUF;
if (k==Self Define ISP Download Command) //Self-define ISP download-command
{
delay(); /fto delay 1s is enough
delay(); /fto delay 1s is enough
soft reset to ISP_Monitor(); //soft-reset to ISP-monitor
}
send UART two(k+1);
}
else
{
/ITI =0;
S2CON = S2CON & 0xFD; /1111, 1101
}
}
262 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

void soft reset to ISP_Monitor (void)

{
IAP_CONTR = 0x60; //0110,0000 soft-reset to ISP-monitor
H
void delay (void)
{
unsigned int j=0;
unsigned int g=0;
for(j=0; j<5; j++)
for(g=0; g<60000; g++)
{
nop();
nop();
nop();
nop();
nop();
H
H
H

void display MCU_Start LED(void)

//sbit MCU_Start LED =P1"7;
for (i=0; i<1; i++)

{
MCU_Start LED =0; //turn on MCU-Start-LED
delay();
MCU_Start LED =1; //turn off MCU-Start-LED
delay();
MCU_Start LED =0; //turn on MCU-Start-LED
}
}
void send PWM (void)
{
CMOD = 0x00; //CIDL-======-mm-—- CPS1 CPS2 ECF Setup PCA Timer
//ICPS1 CPS2 =00, SYSclk/12 is PCA/PWM clock
//18432000/12/256 = 6000
CL = 0x00;
CH = 0x00;
CCAPOL = 0x80; //Set the initial value same as CCAPOH
CCAPOH = 0x80; //50% Duty Cycle
CCAPMO= 0x42; //0100,0010 Setup PCA module 0 in 8-bit PWM, P3.7
CR =1 //Setup PCA/PWM Timer
}

STC MCU Limited. website: www.STCMCU.com 263

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

Assembly program

/* */
/* --- STC MCU International Limited */
/* --- STC12C5Axx Series MCU UART2 communicaton Demo ----*/
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */
S2CON EQU 9AH
;S2SMO, S2SM1, S2SM2, S2REN, S2TBS, S2RBS, S2TI, S2RI
IE2 EQU OAFH
X, X, X, X, X, X, ESPI, ES2
S2BUF EQU 9BH
AUXR EQU SEH
BRT EQU 9CH
IAP_CONTR EQU 0C7H
RELAOD_COUNT EQU OFBH ;18.432MHz, 12T, SMOD = 0, 9600bps
;RELAOD_COUNT EQU OF6H ;18.432MHz, 12T, SMOD = 0, 4800bps
;RELAOD_COUNT EQU 0ECH ;18.432MHz, 12T, SMOD = 0, 2400bps
;RELAOD _COUNT EQU 0D8H ;18.432MHz, 12T, SMOD = 0, 1200bps
ORG 0000H
LIMP MAIN
ORG 0043H
LIMP UART two_Interrupt Receive
ORG 0100H
MAIN:
MOV SP, #0COH

LCALL UART?2 Initial

MOV 11H, #55H

LCALL send UART_two

MOV 11H,

SIMP §

#0AAH
LCALL send UART_two

264 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

UART2_Initial:
PUSH ACC
MOV SCON, #50H ;0101,0000 8-bit variable baud rate, no parity
MOV BRT, #RELOAD_COUNT,;
MOV AUXR, #11H
;TOx12,T1x12,UART MOx6,BRTR,S2SMOD,BRTx12,EXTRAM,S1BRS
;BRTR=1, SIBRS=1, EXTRAM=0 ENABLE EXTRAM

MOV 1E2, #01H ;Enable the secondary UART interrupt, ES2=1
SETTB EA ;Set the global enable bit
POP ACC
RET

send UART two:
PUSH ACC
MOV 1E2, #00H ;Disable the secondary UART interrupt, ES2=0
MOV A, S2CON ;1111,1101, Clear secondary UART transimit interrupt flag
ANL A #O0FDH

MOV S2CON, A
MOV S2BUF, 11H
UART2 Send Wait:

MOV A, S2CON

ANL A, #02H ;0000,0010

CINE A, #02H, UART Send Wait

MOV A, S2CON

ANL A, #OFDH ;1111,1101, Clear secondary UART transimit interrupt flag
MOV S2CON, A

MOV 1E2, #01H ;Enable the secondary UART interrupt, ES2=1
POP ACC

RET

UART two_Interrupt Receive:

PUSS ACC

MOV A, S2CON

ANL A, #01H

CINE A, #01H, CLEAR S2TI RETI
MOV A, S2CON

ANL A, #OFEH :1111,1110

MOV S2CON, A

MOV 11H, S2BUF

INC 11H

LCALL send UART two
POP ACC

RETI

STC MCU Limited. website: www.STCMCU.com 265

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

CLEAR S2TI RETIL:

MOV A, S2CON

ANL A, #0FDH ;1111,1101
MOV S2CON, A

POP ACC

RETI

END

266 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Chapter 9. Analog to Digital Converter

9.1 A/D Converter Structure

STC12C5A608S2 series MCU with A/D conversion function have 8-channel and 10-bit high-speed A/D converters
whose speed is up to 250KHz (250 thousand times per second). the 8-channel ADC, which are on P1 port
(P1.0-P1.7) , can be used as temperature detection, battery voltage detection, key scan, spectrum detection, etc.
After power on reset, P1 ports are in weak pull-up mode. Users can set any one of 8 channels as A/D conversion
through software. And those I/O ports not as ADC function can continue to be used as I/O ports.

STC12C5A6082 series MCU ADC (A/D converter) structure is shown below.

ADC_CONTR Register
ADC_POWERl SPEEDI | SPEEDO | ADC_FLAG ADC_STARTl CHS2 |CH51 | CHSO0 |

|

Analog input Signal channel ADC result Register:
Select switch CHS2/CHS1/CHS0 ADC_ RES and ADC_RESL

ADC7/P1.7 —
ADC6/P1.6 —
ADC5/P1.5 —
ADC4/P1.4 —
ADC3/P1.3 —
ADC2/P1.2 —
ADC1/P1.1 —
ADCO0/P1.0 —

y

\/

v Successive
Approximation
Register

VOLLLL

Comparator

10-bit DAC <:

If AUXR.1/ADRJ = 0, ADC result Register format is shown as below:
ADC_RES|[7:0]
[Apc_Bo] apc_Bs| ADC_B7] ADC_B6 | ADC_BS | ADC_B4]ADC_B3 | ADC_B2]

[- [-] -] -] - | - Jaocsi]apcso|ADC RESL[I:0]

If AUXR.1/ADRJ = 1, ADC result Register format is shown as below:
ADC_RES[1:0]
[-T-T-T-T-T - [apcsoJapc ss]

|ADC7B7 |ADC7B6| ADC_B5 | ADC B4 | ADC B3 | ADC B2 | ADC Bl | ADC B0 | ADC_RESL[7:0]

STC MCU Limited. website: www.STCMCU.com 267

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

The ADC on STC12C5A60S2 is an 10-bit resolution, successive-approximation approach, medium-speed A/D
converter. Vigrp Vrerm 18 the positive/negative reference voltage input for internal voltage-scaling DAC use, the
typical sink current on it is 600uA ~ ImA. For STC12C5A60S2, these two references are internally tied to VCC
and GND separately.

Conversion is invoked since ADC_STRAT(ADC_CONTR.3) bit is set. Before invoking conversion,
ADC_POWER/ADC_CONTR.7 bit should be set first in order to turn on the power of analog front-end in
ADC circuitry. Prior to ADC conversion, the desired I/O ports for analog inputs should be configured as input-
only or open-drain mode first. The converter takes around a fourth cycles to sample analog input data and other
three fourths cycles in successive-approximation steps. Total conversion time is controlled by two register
bits — SPEED1 and SPEEDO. Eight analog channels are available on P1 and only one of them is connected
to to the comparator depending on the selection bits {CHS2,CHS1,CHSO}. When conversion is completed,
the result will be saved onto {ADC _RES,ADC RESL[1:0]} register if AUXR1.2(ADRJ) =0 or saved onto
{ADC_RES[1:0],ADC_RESL} if ADRJ=1 . After the result are completed and saved, ADC_FLAG is also set.
ADC_FLAG associated with its enable register IE.5(EADC). ADC_FLAG should be cleared in software. The
ADC interrupt service routine vectors to 2Bh . When the chip enters idle mode or power-down mode, the power
of ADC is gated off by hardware.

When ADRJ = 0, if user need 10-bit conversion result, calculating the result according to the following formula:

Vin
Vce

10-bit A/D Conversion Result:(ADC RES[7:0], ADC_RESL[1:0]) = 1024 x

When ADRIJ = 0, if user need 8-bit conversion result, calculating the result according to the following formula:

Vin

Vce

8-bit A/D Conversion Result:(ADC_RES[7:0])= 256 x

When ADRIJ = 1, if user need 10-bit conversion result, calculating the result according to the following formula:

Vin
10-bit A/D Conversion Result:(ADC _RES[1:0], ADC_RESL[7:0]) = 1024 x

CcC

In the above formulas, Vin stand for analog input channel voltage, Vcc stand for actual operation voltage.

268 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

9.2 Registers for ADC

bit address and Symbol

MSB LSB Reset value

Mnemonic Description Address

P1 Analog Function
Configure register

ADC _CONTR| ADC Control Register | BCH ADCiPOWER|SPEED]|SPEEDO|AD(LFLAG|ADC7$TART|CH52|CHSI|CHSO 0000 0000B

P1ASF 9DH P17ASF [P16ASF [P15ASF | PI4ASF | PI3ASF | P12ASF [P11ASF [P10ASF 0000 0000B

ADC RES | ADC Result high BDH 0000 0000B
ADC RESL| ADC Result low BEH 0000 0000B
AUXR1 | Auxiliary register 1 [A2H | - |PCA_P4|SPI_P4|s2_P4| GF2 |ADRJ| - | DPS [x000 00x0B

IE Interrupt Enable | A8H | EA |ELvD|EADC| ES | ET1 | EX1 | ETO | EX0 [0000 0000B

IP Interrupt Priority | perr | ppea | pLvp | papc| ps | P11 | px1 | PTO | PXO [0000 00008

Low

Interrupt Priority

IPH B7H |PPCAH|PLVDH |PADCH| PSH [PTIH | PX1H | PTOH | PX0H {0000 0000B

High
1. P1 Analog Function Configure register: P1ASF (Non bit-addressable)
SFR name | Address bit B7 B6 BS5 B4 B3 B2 B1 BO
P1ASF 9DH name | P17ASF | P16ASF | P1SASF | P14ASF | PI3ASF | P12ASF | P11ASF | PI0ASF
PIxASF

0 := Keep P1.x as general-purpose I/O function.
1 := Set P1.x as ADC input channel-x

2. ADC control register: ADC_CONTR (Non bit-addressable)
SFR name Address | bit B7 B6 B5 B4 B3 B2 | BI | BO
ADC_CONTR BCH name | ADC_POWER [SPEEDI | SPEEDO [ADC_FLAG | ADC_START | CHS2 | CHS1 | CHSO

When operating to ADC_CONTR register, "MOV" should be used, while "AND" and "OR" don not be
recommended to use

ADC_POWER : When clear shut down the power of ADC block. When set turn on the power of ADC block.
SPEED1, SPEEDO : Conversion speed selection.

SPEED1| SPEEDO |Times needed by an A/D Coversion
0 0 540 clock cycles are needed for a conversion.
0 1 360 clock cycles are needed for a conversion.
1 0 180 clock cycles are needed for a conversion.
| | 90 clock cycles are needed for a conversion. When the CPU operation
frequency is 12MHz, the speed of ADC is about 250KHz.

The clock source used by ADC block of STC12C5A60S2 series MCU is On-chip R/C clock which is not divided
by Clock divider register CLK_DIV.

ADC_FLAG : ADC interrupt flag.It will be set by the device after the device has finished a conversion, and
should be cleared by the user's software.

STC MCU Limited. website: www.STCMCU.com 269

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

ADC _STRAT : ADC start bit, which enable ADC conversion.It will automatically cleared by the device after the
device has finished the conversion.

CHS2 ~ CHSO : Used to select one analog input source from 8 channels.

CHS2 CHS1 CHSO0 Source
0 0 0 P1.0 (default) as the A/D channel input
0 0 1 P1.1 as the A/D channel input
0 1 0 P1.2 as the A/D channel input
0 1 1 P1.3 as the A/D channel input
1 0 0 P1.4 as the A/D channel input
1 0 1 P1.5 as the A/D channel input
1 1 0 P1.6 as the A/D channel input
1 1 1 P1.7 as the A/D channel input

Note : The corresponding bits in P1ASF should be configured correctly before starting A/D conversion. The
sepecific P1ASF bits should be set corresponding with the desired channels.

Because it will by delayed 4 CPU clocks after the instruction which set ADC_CONTR register has been executed,
Four "NOP" instructions should be added after setting ADC_CONTR register. See the following code:

MOV ADC_CONTR, #DATA

NOP

NOP

NOP

NOP

MOV A, ADC_CONTR

;Only delayed 4 clocks, can the ADC_CONTR be read correctly.

270 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

3. ADC result register: ADC_RES and ADC_RESL
ADC_RES and ADC_RESL are used to save the ADC result, their format as shown below:

Mnemonic | Add | Name B7 B6 BS B4 B3 B2 B1 BO
ADC RES |Bpn| ADC result
- register high
ADC resul
ADC RESL | BEn| APC result
- register low
Auxili
AUXRI |aom| “WHay - |pcapa|spipa| s2pa | Gr2 | ADRI ; DPS
register] - - -

The ADC_RES and ADC _RESL are the final result from the ADC. ADRJ/AUXR.1 is the control bit of ADC
result arrangement in ADC result registers (ADC_RES, ADC_RESL).

If ADRJ=0, The higher 8 bits of 10 bits ADC result are arranged in ADC_RES, and the lower 2 bits are in
ADC_RESL. See the following table.

Mnemonic |Add| Name B7 B6 BS B4 B3 B2 Bl BO
ADC result
ADC _RES |BDh| register [ADC_RES9|ADC_RES8|ADC RES7|ADC_RES6|ADC_RES5|ADC_RES4|ADC_RES3|ADC_RES2|
high
ADC result
ADC_RESL|BEh| register - - - - - - ADC_RESO[ADC_RESI1
low
AUXRI [azn] Aviliary ADRIJ=0
registerl
If user need the full 10-bit conversion result, calculating the result according to the following formula:
Vin
10-bit A/D Conversion Result:(ADC_RES[7:0], ADC_RESL[1:0]) = 1024 x Vee

If user only need 8-bit conversion result, calculating the result according to the following formula:

Vin

Vce

8-bit A/D Conversion Result:(ADC_RES[7:0])= 256 x

In the above formulas, Vin stand for analog input channel voltage, Vcc stand for actual operation voltage.

STC MCU Limited. website: www.STCMCU.com 271

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

If ADRIJ=1, The higher 2 bits of 10 bits ADC result are arranged in ADC_RES, and the lower 8 bits are in
ADC_RESL. See the following table.

Mnemonic |Add| Name B7 B6 B5 B4 B3 B2 Bl BO

ADC result
ADC_RES [BDh| register
high
ADC result
ADC_RESL|BEh| register |ADC RES7JADC RES6{ADC RES5|ADC RES4|ADC RES3|ADC RES2|ADC RESO

ADC_RES9|ADC_RES§

ADC_RESI1

low

Auxiliary
ADRJ=1
registerl

AUXRI1 |A2H

Calculating the full 10-bit conversion result according to the following formula:

Vin
10-bit A/D Conversion Result:(ADC_RES[1:0], ADC_RESL[7:0]) = 1024 x Vee

In the above formulas, Vin stand for analog input channel voltage, Vcc stand for actual operation voltage.

272 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

4. AUXRI1: ADC result arrangement register

Mnemonic | Address | bit 7 6 5 4 3 2 1 0
AUXRI A2H | name - PCA P4 | SPI P4 | S2 P4 | GF2 | ADRJ | - | DPS
PCA P4

0 : Default. The PCA function is on P1[4:2]

1 : The PCA function on P1[4:2] is switched to P4[3:1].
ECI is switched from P1.2 to P4.1
PCAO/PWMO is switched from P1.3 to P4.2
PCA1/PWMI is switched from P1.4 to P4.3

SPI P
0 : Default. The SPI function is on P1[7:4]
1 : The SPI function on P1[7:4] is switched to P4[3:0].
SCLK is switched from P1.7 to P4.3
MOSI is switched from P1.6 to P4.2
MISO is switched from P1.5 to P4.1
SS is switched from P1.4 to P4.0

S2 P4
0 : Default. the UART2(S2) function is on P1[3:2]
1 : The UART2(S2) function on P1[3:2] is switched to P4[3:2].
TxD2 is switched from P1.3 to P4.3
RxD2 is switched from P1.2 to P4.2

GF2 : General Flag. It can be used by software.
ADRJ

. The 10-bit conversion result of ADC is arranged as {ADC_RES[7:0], ADC RESL[1:0]}.
1 : The 10-bit conversion result is right-justified, {ADC RES[1:0], ADC_RESL[7:0]}.

0 : Default. DPTRO is selected as Data pointer.
1 : The secondary DPTR is switched to use.

STC MCU Limited. website: www.STCMCU.com 273

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

5. Registers related with UART1 interrupt : IE, IP and IPH

IE: Interrupt Enable Rsgister (Bit-addressable)

SFR name | Address bit B7 B6 BS5 B4 B3 B2 B1 BO
IE A8H name EA ELVD | EADC| ES ET1 | EX1 | ETO EX0

EA : disables all interrupts.
If EA = 0,no interrupt will be acknowledged.
If EA =1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.

EADC: ADC interrupt enable bit.
If EADC = 0, ADC interrupt will be diabled.
If EADC = 1, ADC interrupt is enabled.

IPH: Interrupt Priority High Register (Non bit-addressable)

SFR name | Address bit B7 B6 B5 B4 B3 B2 B1 BO
IPH B7H name |PPCAH | PLVDH [PADCH| PSH | PTI1H (PX1H| PTOH | PXO0H
IP: Interrupt Priority Register (Bit-addressable)
SFR name | Address bit B7 B6 BS B4 B3 B2 B1 BO
1P B8H name | PPCA | PLVD | PADC PS PT1 | PXl1 PTO PX0

PADCH, PADC: ADC interrupt priority control bits.
if PADCH=0 and PADC=0, ADC interrupt is assigned lowest priority (priority 0).
if PADCH=0 and PADC=1, ADC interrupt is assigned lower priority (priority 1).
if PADCH=1 and PADC=0, ADC interrupt is assigned higher priority (priority 2).
if PADCH=1 and PADC=1, ADC interrupt is assigned highest priority (priority 3).

274 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

9.3 Application Circuit of A/D Converter

/
2211 28 [_JVee
rP23[]2 27[]P2.1
RST[3 26 [_1P2.0
RxDP3.0[_]4 92} 25 [P1.7/ADCT %& Signal source
TxD/P3.1[]5 % 24 [] P1.6/ADC6
XTAL2[6 g 23 []P1.5/ADC5 T
XTALI[]7 5 22 [1P1.4/ADC4 =
Top32 s Q 21 [P1.3/ADC3
INTI/P33]9 =] 20] P1.2/ADC2
CLKOUTO/ECITOP3.4[] 10) 19 [P1.1/ADC1
CLKOUTI/PWMI/PCAI/TIP3.5] 11 0 18] P1./ADCO
P24 112 17 [P3.7/PCA0/PWMO
2513 16 [r2.7
Gnd[_]14 15 r26

ADC function in P1 port, P1.0 - P1.7 in all 8 channels

STC MCU Limited.

website: www.STCMCU.com 275

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

9.4 ADC Application Circuit for Key Scan

/
P21 28 [Vee Vee
r23[]2 27 P21
RST[|3 26 P20 e
RxD/P3.0[_]4 2] 25 [P1.7/ADC7 o—]iov
TxD/P3.1[]5 % 24] P1.6/ADC6 e

xTAL2[6 to 23 [P1.5/ADCS \

XTALI[|7 °£ 22] P1.4/ADC4 _L0—|I pavee
INToP32[s g 21 [p1.3/aDC3 o—{li 23 Vee
INTI/P3.3]9 = 20 [P1.2/ADC2 10K e

CLKOUTO/ECITO/P3.4[] 10 N 19] PL.1/ADCI O—]l1 3/4 Vee
CLKOUTI/PWMI/PCA/TI/P3.S[|11 o0 18] P1.0/ADCO 10K o
2412 17 [JP3.7/PCAO/PWMO O—I1 4/5 Vee
P25[]13 16 [—Jr2.7
Gnd[_| 14 15[Jr26

ADC function in P1 port, P1.0 - P1.7 in all 8 channels

N
P21 28 [Vee
P32 27 [Ip2.1
RST[]3 26 [1P2.0
RxD/P3.0[_]4 wn 25] r1.7/ADC7
TxD/P3.1 [5 % 24 [P1.6/ADC6
xTAL2[6 !ﬁ 23] P1.5/ADCS
XTALI[]7 & 22 [r14/ADC4
NTOP32 |8 ~ 21 [] P1.3/ADC3
WTI1/P33]9 % 20] P1.2/ADC2
CLKOUTO/ECITO/P3.4[_] 10 I\ 19 [p1.1/ADCI _— 0. 051 11,5 1520 2025
CLKOUTI/PWMI/PCAUTI/P3.5 [11 o 18 [P1.0/ADCO -
2412 17 [1p3.7/PCAOPWMO This curcuit can realize the single key scan
P25 13 16 [1p27 and assembling key scan detection function,
Gnd [14 15 P26 but the value of resistors should be adjusted

according to the actual demand.

10 keys are used to divide the voltage in the below curcuit, what the error of each
key float between -0.25V and +0.25V can effectively avoid that resistance error or
temprature difit lead to disable key detection.

3V

RO
ADCx 10KQ

swil

276 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

9.5 A/D reference voltage source

STC12C5Axx series ADC reference voltage is from MCU power supply voltage directly, so it can work without
an external reference voltage source. If the required precision is relatively high, then you maybe using a stable
reference voltage source, in order to calculate the operating voltage VCC, then calculate the ADC exact value. For
example, you can connect a 1.25V(or 1.00V, ect. ...) to ADC channel 7, according to the conversion result, you
can get the actual VCC voltage, thus you can calculate other 7 channels ADC results. (Vce is constant in short
time)

STC MCU Limited. website: www.STCMCU.com 277

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

9.6 Program using interrupts to demostrate A/D Conversion

There are two example procedures using interrupts to demostrate A/D conversion, one written in C langugage and
the other in assembly language.

1. C language code listing:

/* */
/* --—- STC MCU International Limited */
/* -——- STC 1T Series MCU A/D Conversion Demo ----------=--=-------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"
#include "intrins.h"

#define FOSC 18432000L
#define BAUD 9600

typedef unsigned char BYTE;
typedef unsigned int WORD;

/*Declare SFR associated with the ADC */

sfr ADC_CONTR = 0xBG; //ADC control register

sfr ADC RES = 0xBD; //ADC hight 8-bit result register

sfr ADC _LOW2 = O0xBE; //ADC low 2-bit result register

sfr P1ASF = 0x9D; //P1 secondary function control register

/*Define ADC operation const for ADC_CONTR*/

#define ADC_POWER 0x80 //ADC power control bit
#define ADC _FLAG 0x10 //ADC complete flag
#define ADC_START 0x08 //ADC start control bit
#define ADC_SPEEDLL 0x00 //540 clocks
#define ADC _SPEEDL 0x20 /1360 clocks
#define ADC _SPEEDH 0x40 //180 clocks
#define ADC _SPEEDHH 0x60 //90 clocks

void InitUart();

void SendData(BYTE dat);

void Delay(WORD n);

void InitADC();

BYTE ch=0; //ADC channel NO.

278 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

void main()

{
InitUart();
InitADC();
IE = 0xa0;

while (1);
H

/*
ADC interrupt service routine
*/

void adc_isr() interrupt 5 using 1

{
ADC_CONTR &= !ADC_FLAG;

SendData(ch);
SendData(ADC_RES);

//Init UART, use to show ADC result

//Init ADC sfr

//Enable ADC interrupt and Open master interrupt switch
//Start A/D conversion

//Clear ADC interrupt flag

//Show Channel NO.
//Get ADC high 8-bit result and Send to UART

//if you want show 10-bit result, uncomment next line

/I SendData(ADC_LOW?2);

if (++ch>7) ch=0;

//Show ADC low 2-bit result

//switch to next channel

ADC_CONTR =ADC_POWER | ADC_SPEEDLL | ADC_START | ch;

}

/*

Initial ADC sfr
*/

void InitADC()

{
P1ASF = 0xff;
ADC RES =0;

//Set all P1 as analog input port
//Clear previous result

ADC_CONTR =ADC_POWER | ADC_SPEEDLL | ADC_START | ch;

Delay(2); //ADC power-on delay and Start A/D conversion
}
/*
Initial UART
*/
void InitUart()
{
SCON = 0x5a; //8 bit data ,no parity bit
TMOD = 0x20; //T1 as 8-bit auto reload
TH1 =TL1 =-(FOSC/12/32/BAUD); //Set Uart baudrate
TR1=1; //T1 start running
}
STC MCU Limited. website: www.STCMCU.com 279

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412

/*
Send one byte data to PC
Input: dat (UART data)
Output:-

*/
void SendData(BYTE dat)
{

while (ITD);

TI=0;

SBUF = dat;
}
/*
Software delay function

*/
void Delay(WORD n)
{

WORD x;

while (n--)

{
x =5000;
while (x--);

//Wait for the previous data is sent
/IClear TI flag
//Send current data

280 STC MCU Limited.

website: www.STCMCU.com

Fax:86-755-82905966

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2. Assembly language code listing:

J* */
;/* --- STC MCU International Limited */
;/* -——- STC 1T Series MCU A/D Conversion Demo --------===========-=-- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;% - Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC ~ */

J* */
;/¥Declare SFR associated with the ADC */
ADC_CONTR EQU 0BCH ;ADC control register
ADC RES EQU 0BDH ;ADC high 8-bit result register
ADC LOW2 EQU O0BEH ;ADC low 2-bit result register
P1ASF EQU 09DH ;P1 secondary function control register

;/*Define ADC operation const for ADC_CONTR*/

ADC POWER EQU SOH ;ADC power control bit
ADC_FLAG EQU 10H ;ADC complete flag
ADC START EQU 08H ;ADC start control bit
ADC_SPEEDLL EQU 00H ;540 clocks
ADC SPEEDL EQU 20H ;360 clocks
ADC_SPEEDH EQU 40H ;180 clocks
ADC_SPEEDHH EQU 60H ;90 clocks
ADCCH DATA 20H ;ADC channel NO.
ORG 0000H
LIMP MAIN
ORG 002BH

LIMP ADC ISR

ORG 0100H
MAIN:
MOV SP, #3FH
MOV ADCCH, #0
LCALL INIT UART ;Init UART, use to show ADC result
LCALL INIT ADC ;Init ADC sfr
MOV IE, #0AOH ;Enable ADC interrupt
;and Open master interrupt switch
SIMP §

STC MCU Limited. website: www.STCMCU.com 281

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

i

;ADC interrupt service routine

2 */

ADC _ISR:
PUSH
PUSH
ANL
MOV
LCALL
MOV
LCALL

ACC

PSW

ADC CONTR, #NOTADC FLAG ;Clear ADC interrupt flag
A, ADCCH

SEND DATA ;Send channel NO.

A, ADC RES ;Get ADC high 8-bit result

SEND DATA ;Send to UART

;//if you want show 10-bit result, uncomment next 2 lines

; MOV

; LCALL
INC
MOV
ANL
MOV
ORL
MOV

POP
POP
RETI

i

;Initial ADC sfr

; ¥/
INIT_ADC:

MOV
MOV
MOV
ORL

MOV

MOV
LCALL
RET
i
;Initial UART
; ¥/
INIT _UART:

MOV
MOV
MOV
MOV
MOV
SETB
RET

A, ADC LOW2 ;Get ADC low 2-bit result
SEND DATA ;Send to UART
ADCCH
A, ADCCH
A, #07H
ADCCH, A
A, #ADC_POWER | ADC _SPEEDLL | ADC_START
ADC CONTR, A ;ADC power-on delay
;and re-start A/D conversion
PSW
ACC
P1ASF, #0FFH ;Set all P1 as analog input port
ADC RES, #0 ;Clear previous result
A, ADCCH
A, #ADC_POWER | ADC_SPEEDLL | ADC_START
ADC CONTR, A ;ADC power-on delay
;and Start A/D conversion
A, #2
DELAY
SCON, #5AH ;8 bit data ,no parity bit
TMOD, #20H ;T1 as 8-bit auto reload
A, #-5 ;Set Uart baudrate -(18432000/12/32/9600)
THI, A ;Set T1 reload value
TL1, A
TR1 ;T1 start running

282 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

*
;Send one byte data to PC
;Input: ACC (UART data)
;Output:-
; */
SEND DATA:
JNB TI, $;Wait for the previous data is sent
CLR TI ;Clear TI flag
MOV SBUF, A ;Send current data
RET
*
;Software delay function
; */
DELAY:
MOV R2, A
CLR A
MOV RO, A
MOV RI, A
DELAY1:
DINZ RO, DELAY1
DINZ RI, DELAY1
DINZ R2, DELAY1
RET
END

STC MCU Limited. website: www.STCMCU.com 283

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

9.7 Program using polling to demostrate A/D Conversion

There are two example procedures using inquiry to demostrate A/D conversion, one written in C langugage and
the other in assembly language.

1. C language code listing:

/* */
/¥ --- STC MCU International Limited */
/¥ --- STC 1T Series MCU A/D Conversion Demo ------=--===-=--nmun- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/¥ --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"
#include "intrins.h"

#define FOSC 18432000L
#define BAUD 9600

typedef unsigned char BYTE;
typedef unsigned int WORD;

/*Declare SFR associated with the ADC */

sfr ADC _CONTR = 0xBC; //ADC control register

sfr ADC RES = 0xBD; //ADC high 8-bit result register

sfr ADC LOW2 = O0xBE; //ADC low 2-bit result register

sfr P1ASF = 0x9D; //P1 secondary function control register

/*Define ADC operation const for ADC_CONTR*/

#define ADC POWER 0x80 //ADC power control bit
#define ADC FLAG 0x10 //ADC complete flag
#define ADC _START 0x08 //ADC start control bit
#define ADC SPEEDLL 0x00 //540 clocks

#define ADC SPEEDL 0x20 //360 clocks

#define ADC SPEEDH 0x40 //180 clocks

#define ADC SPEEDHH 0x60 //90 clocks

void InitUart();

void InitADC();

void SendData(BYTE dat);
BYTE GetADCResult(BYTE ch);
void Delay(WORD n);

void ShowResult(BYTE ch);

284 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

void main()

{
InitUart(); //Init UART, use to show ADC result
InitADC(); //Init ADC sfr
while (1)
{
ShowResult(0); //Show ChannelO
ShowResult(1); //Show Channell
ShowResult(2); //Show Channel2
ShowResult(3); //Show Channel3
ShowResult(4); //Show Channel4
ShowResult(5); //Show Channel5
ShowResult(6); //Show Channel6
ShowResult(7); //Show Channel7
H
§
/*
Send ADC result to UART
*/
void ShowResult(BYTE ch)
{
SendData(ch); //Show Channel NO.
SendData(GetADCResult(ch)); //Show ADC high 8-bit result
//if you want show 10-bit result, uncomment next line
/I SendData(ADC_LOW?2); //Show ADC low 2-bit result
§
/*
Get ADC result
*/
BYTE GetADCResult(BYTE ch)
{
ADC CONTR =ADC POWER |ADC SPEEDLL | ch | ADC START,
~nop_(); //Must wait before inquiry
nop();
nop();
nop();
while ((ADC_CONTR & ADC_FLAQG)); //Wait complete flag
ADC CONTR &=~ADC _FLAG; //Close ADC
return ADC_RES; //Return ADC result
H
STC MCU Limited. website: www.STCMCU.com 285

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

//8 bit data ,no parity bit
/IT1 as 8-bit auto reload
//Set Uart baudrate

//T1 start running

//Open 8 channels ADC function
//Clear previous result

//ADC power-on and delay

/*
Initial UART
*/
void InitUart()
{
SCON = 0x5a;
TMOD = 0x20;
THI1 =TLI1 =-(FOSC/12/32/BAUD);
TR1=1;
}
/*
Initial ADC sfr
*/
void InitADC()
{
P1ASF = 0xff;
ADC_RES =0;
ADC_CONTR =ADC_POWER |ADC_SPEEDLL;
Delay(2);
}
/*
Send one byte data to PC

Input: dat (UART data)
Output:-

//Wait for the previous data is sent
//Clear TI flag
//Send current data

*/
void SendData(BYTE dat)
{
while (!TT);
TI=0;
SBUF = dat;
¥
/*
Software delay function
*/
void Delay(WORD n)
{
WORD x;
while (n--)
{
x =5000;
while (x--);
¥
¥

286

STC MCU Limited.

website:

www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

2. Assembly language code listing:

J*

;/* --- STC MCU International Limited
;/¥ --- STC 1T Series MCU A/D Conversion Demo
;/* --- Mobile: (86)13922809991
3/* --- Fax: 86-755-82905966
3/* - Tel: 86-755-82948412
/% --- Web: www.STCMCU.com
;/* If you want to use the program or the program referenced in the

;/* article, please specify in which data and procedures from STC

J*

;/*Declare SFR associated with the ADC */

ADC_CONTR EQU 0BCH ;ADC control register
ADC_RES EQU 0BDH ;ADC high 8-bit result register
ADC_LOW2 EQU OBEH ;ADC low 2-bit result register
P1ASF EQU 09DH ;P1 secondary function control register
;/*Define ADC operation const for ADC_CONTR*/
ADC_POWER EQU 80H ;ADC power control bit
ADC _FLAG EQU 10H ;ADC complete flag
ADC_START EQU 08H ;ADC start control bit
ADC_SPEEDLL EQU 00H ;540 clocks
ADC_SPEEDL EQU 20H ;360 clocks
ADC _SPEEDH EQU 40H ;180 clocks
ADC_SPEEDHH EQU 60H ;90 clocks
ORG 0000H
LIMP MAIN
ORG 0100H
MAIN:
LCALL INIT UART ;Init UART, use to show ADC result
LCALL INIT ADC ;Init ADC sfr
NEXT:
MOV A, #0
LCALL SHOW_RESULT ;Show channelO result
MOV A, #1
LCALL SHOW_RESULT ;Show channell result
MOV A, #2
LCALL SHOW_RESULT ;Show channel?2 result
STC MCU Limited. website: www.STCMCU.com 287

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
MOV A, #3
LCALL SHOW_RESULT ;Show channel3 result
MOV A, #4
LCALL SHOW_RESULT ;Show channel4 result
MOV A, #5
LCALL SHOW_RESULT ;Show channel$ result
MOV A, #6
LCALL SHOW_RESULT ;Show channel6 result
MOV A, #7
LCALL SHOW_RESULT ;Show channel7 result
SIMP NEXT

I

;Send ADC result to UART

;Input: ACC (ADC channel NO.)

;Output:-

SHOW_RESULT:
LCALL SEND_DATA

LCALL GET ADC _RESULT

LCALL SEND DATA

;//if you want show 10-bit result, uncomment next 2 lines

; MOV A, ADC_LOW2
; LCALL SEND_DATA
RET

o

*/

;Show Channel NO.
;Get high 8-bit ADC result
;Show result

;Get low 2-bit ADC result
;Show result

;Read ADC conversion result
;Input: ACC (ADC channel NO.)
;Output: ACC (ADC result)

*/

GET_ADC_RESULT:
ORL A,
MOV ADC_CONTR,A
NOP
NOP
NOP
NOP

WAIT:
MOV A,ADC_CONTR
INB ACC4, WAIT
ANL ADC_CONTR,
MOV A, ADC_RES
RET

#NOT ADC_FLAG

#ADC_POWER | ADC_SPEEDLL | ADC_START

;Start A/D conversion
;Must wait before inquiry

;Wait complete flag
;ADC_FLAG(ADC _CONTR.4)
;Clear ADC_FLAG
;Return ADC result

288 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

*
;Initial ADC sfr
5 *
INIT_ADC:
MOV P1ASF, #0FFH ;Open 8 channels ADC function
MOV ADC RES, #0 ;Clear previous result
MOV ADC CONTR, #ADC POWER |ADC_SPEEDLL
MOV A, #2 ;ADC power-on and delay
LCALL DELAY
RET
/*
;Initial UART
; */
INIT _UART:
MOV SCON, #5AH ;8 bit data ,no parity bit
MOV TMOD, #20H ;T1 as 8-bit auto reload
MOV A, #-5 ;Set Uart baudrate -(18432000/12/32/9600)
MOV THI, A ;Set T1 reload value
MOV TLI, A
SETB TRI ;T1 start running
RET
/*
;Send one byte data to PC
;Input: ACC (UART data)
;Output:-
; */
SEND DATA:
NB TI, $;Wait for the previous data is sent
CLR TI ;Clear TI flag
MOV SBUF, A ;Send current data
RET
/*
;Software delay function
; */
DELAY:
MOV R2, A
CLR A
MOV RO, A
MOV RI, A
DELAY1:
DINZ RO, DELAY1
DINZ RI1, DELAY1
DINZ R2, DELAY1
RET
END

STC MCU Limited. website: www.STCMCU.com 289

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Chapter 10. Programmable Counter Array(PCA)

The Programmable Counter Array is a special 16-bit Timer that has two 16-bit capture/compare modules
associated with it. Each of the modules can be programmed to operate in one of four modes: rising and/or falling
edge capture(calculator of duty length for high/low pulse), software timer, high-speed output, or pulse width
modulator. Each module has a pin associated with it in port 1. Module 0 is connected to pin P1.3, module 1 to pin
P1.4 in STC12C5A608S2 series. While in STC12C5201AD series, module 0 is connected to pin P3.7, module 1 to
pin P3.5.

The PCA timer is a common time base for all two modules and can be programmed to run at 1/12 the system
clock, 1/2 the system clock, the Timer 0 overflow or the input on ECI pin(P1.2). The timer count source is
determined from CPS1 and CPSO0 bits in the CMOD SFR.

10.2 SFRs related with PCA
PCA/PWM SFRs table

Bit address and Symbol
Mnemonic Description Add s Reset
B7 | B6 B5 | B4 | B3| B2 | Bl | Bo | Value
CCON |PCA Control Register | D8H | CF CR - - - - CCF1 [CCFO |00xx,xx00
CMOD |PCA Mode Register | D9H [CIDL| - - - |cps2| cpst | cpso | ECF |oxxx,0000
CCAPMO ﬁggsﬁfduleomde DAH| - |ECOMO|CAPPO|CAPNO|MATO| TOGO | PWMO | ECCFO|x000,0000
CCAPMI iggsﬁfdmelMOde DBH| - |ECOMI|CAPPI|CAPNI|MATI|TOGI | PWMI |ECCF1|x000,0000
CL |PCA Base Timer Low | E9H 0000,0000
CH PCA Base Timer High | FOH 0000,0000
ccapor, |PCAModule-0 Capture | 0000,0000
Register Low
ccapoy |PCA Module-0 Capture |\ 0000,0000
Register High
ccapiL |PCAModule-1 Capture | 0000,0000
Register Low
ccapiy |PCA Module-l Capture |y 0000,0000
Register High
pca pwmo|PCA PWM Mode F2H| - . . - - - |EPCOH |EPCOL | xxxx,xx00
- Auxiliary Register 0
pca pwmi |[FCA PWM Mode F3H | - - |EPCIH|EPCIL|xxxx,xx00
- Auxiliary Register 1
AUXR1 |Auxiliary Register | | A2H| - |PCA P4|SPI P4| S2 P4 | GF2 |ADRI| - | DPS |x000,00x0

290 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

1. PCA operation mode register: CMOD (Non bit-addressable)

SFR name

Address

bit B7 B6 BS B4 B3 B2

Bl

BO

CMOD

D9H

name | CIDL - - - CPS2 | CPS1

CPSO

ECF

CIDL : PCA Counter control bit in Idle mode.
If CIDL=0, the PCA counter will continue functioning during idle mode.
If CIDL=1, the PCA counter will be gated off during idle mode.

CPS2, CPS1, CPSO : PCA Counter Pulse source Select bits.

CPS2 | CPS1| CPSO | Select PCA/PWM clock source

0 0 0 0, System clock/12, SYSclk/12

0 0 1 1, System clock/2, SYSclk/2
2, Timer 0 overflow. PCA/PWM clock can up to SYSclk because Timer 0 can operate in

0 1 0 | IT mode. Frequency-adjustable PWM output can be achieved by changing the Timer 0
overflow.

0 1 1 3, Exrenal clock from ECI/P1.2 (or P4.1) pin (max speed = SYSclk/2)

1 0 0 4, System clock, SYSclk

1 0 1 5, System clock/4, SYSclk/4

1 1 0 6, System clock/6, SYSclk/6

1 1 1 7, System clock/8, SYSclk/8

For example, If CPS2/CPS1/CPS0=1/0/0, PCA/PWM clock source is SYSclk.

If users need to select SYSclk/3 as PCA clock source, Timer 0 should be set to operate in 1T mode and generate
an overflow every 3 counting pulse.

ECF : PCA Counter Overflow interrupt Enable bit.
ECF=0 disables CF bit in CCON to generate an interrupt.
ECF=1 enables CF bit in CCON to generate an interrupt.

STC MCU Limited.

website: www.STCMCU.com

291

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. PCA control register : CCON (Non bit-addressable)

SFR name Address bit B7 B6 B5 B4 B3 B2 Bl BO
CCON DS8H name CF CR - - - - CCF1 | CCFO0

CF : PCA Counter overflow flag. Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF
in CMOD is set. CF may be set by either hardware or software but can only be cleared by software.

CR : PCA Counter Run control bit. Set by software to turn the PCA counter on. Must be cleared by software to
turn the PCA counter off.

CCF1:PCA Module 1 interrupt flag. Set by hardware when a match or capture from module 1 occurs.Must be
cleared by software. A match means the value of the PCA counter equals the value of the Capture/Compare
register in module 1.A capture means a specific edge from CEX1 happens, so the Capture/Compare register
latches the value of the PCA counter, and the CCF1 is set.

CCFO0 :PCA Module 0 interrupt flag.Set by hardware when a match or capture from module 0 occurs. Must be
cleared by software.

3. PCA capture/campare register CCAPMO0 and CCAPM1

Each module in the PCA has a special function register associated with it. These registers are CCAPMn, n=0 ~1.
CCAPMO for module 0 and CCAPM1 for module 1. The register contains the bits that control the mode in which
each module will operate. The ECCFn bit enables the CCFn flag in the CCON SFR to generate an interrupt when
a match or compare occurs in the associated module. PWMn enables the pulse width modulation mode. The
TOGn bit when set causes the CCPn output associated with the module to toggle when there is a match between
the PCA counter and the module’s capture/compare register. The match bit(MATn) when set will cause the CCFn
bit in the CCON register to be set when there is a match between the PCA counter and the module’s capture/
compare register.

The next two bits CAPNn and CAPPn determine the edge that a capture input will be active on. The CAPNn bit
enables the negative edge, and the CAPPn bit enables the positive edge. If both bits are set, both edges will be
enabled and a capture will occur for either transition. The bit ECOMn when set enables the comparator function.

292 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
Capture/Compare register of PCA module 0 : CCAPMO0 (Non bit-addressable)
SFR name | Address | bit B7 B6 BS B4 B3 B2 Bl BO
CCAPMO | DAH | name - ECOMO | CAPPO | CAPNO | MATO | TOGO | PWMO | ECCF0
ECOMO : Comparator Enable bit.
ECOMO0=0 disables the comparator function;
ECOMO=1 enables the comparator function.
CAPPO : Capture Positive control bit.
CAPPO=1 enables positive edge capture.
CAPNO : Capture Negative control bit.
CAPNO=1 enables negative edge capture.
MATO : Match control bit.
When MATO = 1, a match of the PCA counter with this module’s compare/capture register causes the
CCFO0 bit in CCON to be set.
TOGO : Toggle control bit.
When TOGO=1, a match of the PCA counter with this module’s compare/capture register causes the
CCPO pin to toggle.
(CCP0O/PCAO0/PWMO/P1.3 or CCPO/PCAO0/PWMO/P4.2)
PWMO : Pulse Width Modulation.
PWMO0=1 enables the CCPO pin to be used as a pulse width modulated output.
(CCPO/PCA0/PWMO/P1.3 or CCPO/PCAO0/PWMO/P4.2)
ECCFO: Enable CCFO interrupt.
Enables compare/capture flag CCFO in the CCON register to generate an interrupt.
Capture/Compare register of PCA module 1 : CCAPM1 (Non bit-addressable)

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
CCAPM1 | DBH | name - ECOMI1 | CAPP1 | CAPNI | MATI | TOG1 | PWMI | ECCF1

ECOMI1 : Comparator Enable bit.
ECOM1=0 disables the comparator function;
ECOM1=1 enables the comparator function.
CAPPI1 : Capture Positive control bit.
CAPPI1=1 enables positive edge capture.
CAPNI1 : Capture Negative control bit.
CAPNI1=1 enables negative edge capture.
MAT1: Match control bit.
When MAT1 = 1, a match of the PCA counter with this module’s compare/capture register causes the
CCF1 bit in CCON to be set.
TOGI1 : Toggle control bit.
When TOG1=1, a match of the PCA counter with this module’s compare/capture register causes the
CCP1 pin to toggle.
(CCP1/PCA1/PWM1/P1.4 or CCP1/PCA1/PWM1/P4.3)
PWMI : Pulse Width Modulation.
PWMI1=1 enables the CEX1 pin to be used as a pulse width modulated output.
(CCP1/PCA1/PWMI1/P1.4 or CCP1/PCA1/PWM1/P4.3)
ECCF1: Enable CCFI interrupt.
Enables compare/capture flag CCF1 in the CCON register to generate an interrupt.

STC MCU Limited. website: www.STCMCU.com 203

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

The operation mode of PCA modules set as shown in the below table.

Setting the operation mode of PCA modules (CCAPMn register, n=0,1)

- |[ECOMn|CAPPn | CAPNn |MATn | TOGn|PWMn | ECCFn |[Function of PCA modules
0 0 0 0 0 0 0 [No operation
1 0 0 0 0 1 0 |8-bit PWM, no interrupt
| 1 0 0 0 | 1 S_bl.t PWM output, interrupt can be generated
on rising edge.
| 0 | 0 0 | | 8-bit PWM output, interrupt can be generated
on falling edge.
| | | 0 0 | | 8-bit PWM output, interrupt can be generated
on both rising and falling edges.
16-bit Capture Mode, caputre triggered by the
X ! 0 0 0 0 X rising edge on CCPn/PCAn pin
16-bit Capture Mode, capture triggered by the
X 0 ! 0 0 0 X falling edge on CCPn/PCAn pin
16-bit Capture Mode, capture triggered by the
X ! ! 0 0 0 X transition on CCPn/PCAn pin
1 0 0 1 0 0 X [16-bit software timer
1 0 0 1 1 0 X |16-bit high-speed output

4. PCA 16-bit Counter — low 8-bit CL and high 8-bit CH
The addresses of CL and CH respectively are EOH and F9H, and their reset value both are 00H. CL and CH are

used to save the PCA load value.

5. PCA Capture/Compare register — CCAPnL and CCAPnH

When PCA is used to capture/compare, CCAPnL and CCAPnH are used to save the 16-bit capture value in
corresponding block. When PCA is operated in PWM mode, CCAPnL and CCAPnH are used to control the duty
cycle of PWM output signal. "n=0 or 1" respectively stand for module 0 and 1. Reset value of regsiters CCAPnL
and CCAPnH are both O0H. Their addresses respectively are:

CCAPOL — EAH, CCAPOH — FAH : Capture / Compare register of module 0

CCAPIL — EBH, CCAPIH — FBH : Capture / Compare register of module 1

204 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
6. PWM registers of PCA modules : PCA_PWMO0 and PCA_PWM1
PCA_PWMO : PWM register of PCA module 0

SFR name | Address | bit B7 B6 BS5 B4 B3 B2 B1 BO
PCA_ PWMO| F2H |name| - - - - - - |EPCOH | EPCOL

B7 ~ B2 : Reserved
EPCOH : Associated with CCAPOH, it is used in PCA PWM mode.
EPCOL : Associated with CCAPOL, it is used in PCA PWM mode.

PCA_PWMI : PWM register of PCA module 1

SFR name | Address | bit B7 B6 B5 B4 B3 B2 B1 BO
PCA PWMI1 F3H name - - - - - - EPCI1H | EPCIL

B7 ~ B2 : Reserved
EPCI1H : Associated with CCAP1H, it is used in PCA PWM mode.
EPCI1L : Associated with CCAP1L, it is used in PCA PWM mode.

7. Register swicthing PCA/PWM function from P1 port to P4 port : AUXR1

SFR name [Address| bit B7 B6 B5 B4 B3 B2 Bl | BO [Reset Value
AUXRI1 A2H |name | - |PCA P4[SPI P4|S2 P4|GF2|ADRJ| - | DPS | x000,00x0

PCA P4
0 : Default. The PCA function is on P1[4:2]
1 : The PCA function on P1[4:2] is switched to P4[3:1].
ECI is switched from P1.2 to P4.1
PCAO0/PWMO is switched from P1.3 to P4.2
PCA1/PWM1 is switched from P1.4 to P4.3

SPI P4
0 : Default. The SPI function is on P1[7:4]
1 : The SPI function on P1[7:4] is switched to P4[3:0].
SCLK is switched from P1.7 to P4.3
MOSI is switched from P1.6 to P4.2
MISO is switched from P1.5 to P4.1
SS is switched from P1.4 to P4.0

0 : Default. the UART2(S2) function is on P1[3:2]

1 : The UART2(S2) function on P1[3:2] is switched to P4[3:2].
TxD2 is switched from P1.3 to P4.3
RxD?2 is switched from P1.2 to P4.2

GF2 : General Flag. It can be used by software.

0 : The 10-bit conversion result of ADC is arranged as {ADC_RES[7:0], ADC _RESL[1:0]}.
1 : The 10-bit conversion result is right-justified, {ADC _RES[1:0], ADC RESL[7:0]}.

0 : Default. DPTRO is selected as Data pointer.
1 : The secondary DPTR is switched to use.

STC MCU Limited. website: www.STCMCU.com 295

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

10.2 PCA/PWM Structure

There are 2 channels Programmable Counter Arrary PCA/PWM in STC12C5A60S2 series MCU. (PCA/PWM
function can be swicthed from P1 port to P4 port by setting AUXR1 register)

P4.2/CCPO/PCAO0/PWMO (AUXR1.6/PCA_P4=1)
Module 0

P1.3/CCPO/PCAO0/PWMO (AUXR1.6/PCA_P4=0)

16-bit PCA
Timer/Counter

P4.3/CCP1/PCA1/PWMI (AUXRI1.6/PCA_P4=1)
Module 1

P1.4/CCP1/PCA1/PWMI (AUXRI1.6/PCA_P4=0)

Programmable Counter Arrary Structure

Each PCA/PWM module can be operated in 4 modes : rising / falling capture mode, software timer, high-speed
output mode and adjustable pulse output mode.
STC12C5A608S2 series: module 0 connect to P1.3/CCPO (which can be swiched to P4.2/CCP0/MISO),

module 1 connect to P1.4/CCP1 (which can be swiched to P4.3/CCP1/SCLK).

SYSclk/1 _E_
SYSclk/2 _E_"
SYSelki4 —lo——¢

SYSellis —let—¢

< CH | CL

SYSclk/8 —E—" 16-Bit counter PCA Interrput
SYSclk/12 —E g—l
Timer 0 overflow —E—ﬂ

External input
ECI(P1.2)

IDLE — CMOD [cpL] - |-] - Jcps2[cpsi[cpso] ECF |

To PCA Module

[cF TR - T - T - T - JccFi] ccro JccoN

PCA Timer/Counter

296 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

In the CMOD SFR, there are two additional bits associated with the PCA. They are CIDL which allows the PCA
to stop during idle mode, and ECF which when set causes an interrupt and the PCA overflow flag CF(in the
CCON SFR) to be set when the PCA timer overflows.

The CCON SFR contains the run control bit for PCA and the flags for the PCA timer and each module. To run
the PCA the CR bit(CCON.6) must be set by software; oppositely clearing bit CR will shut off PCA is shut off
PCA. The CF bit(CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF
(CMOD.0) bit in the CMOD register is set. The CF bit can only be cleared by software. There are two bits named
CCFO0 and CCF1 in SFR CCON. The CCF0 and CCF1 are the flags for module 0 and module 1 respectively. They
are set by hardware when either a match or a capture occurs. These flags also can only be cleared by software.

Each module in the PCA has a special function register associated with it, CCAPMO for module-0 and CCAPM1
for module-1. The register contains the bits that control the mode in which each module will operate. The ECCFn
bit controls if to pass the interrupt from CCFn flag in the CCON SFR to the MCU when a match or compare
occurs in the associated module. PWMn enables the pulse width modulation mode. The TOGn bit when set causes
the pin CCPn output associated with the module to toggle when there is a match between the PCA counter and
the module’s Capture/Compare register. The match bit(MATn) when set will cause the CCFn bit in the CCON
register to be set when there is a match between the PCA counter and the module’s Capture/Compare register.

The next two bits CAPNn and CAPPn determine the edge type that a capture input will be active on. The CAPNn
bit enables the negative edge, and the CAPPn bit enables the positive edge. If both bits are set, both edges will be
enabled and a capture will occur for either transition. The bit ECOMn when set enables the comparator function.

STC MCU Limited. website: www.STCMCU.com 297

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

10.3 PCA Modules Operation Mode

The operation mode of PCA modules set as shown in the below table.

Setting the operation mode of PCA modules (CCAPMn register, n=0,1)

- |ECOMn|CAPPn| CAPNn |MATn | TOGn |PWMn | ECCFn |Function of PCA modules
0 0 0 0 0 0 0 |No operation
1 0 0 0 0 1 0 |8-bit PWM, no interrupt
| | 0 0 0 | | 8-b1F PWM output, interrupt can be generated
on rising edge.
| 0 | 0 0 | | 8-bit RWM output, interrupt can be generated
on falling edge.
| | | 0 0 | | 8-bit PWM output, interrupt can be generated
on both rising and falling edges.
16-bit Capture Mode, caputre triggered by the
X ! 0 0 0 0 X rising edge on CCPn/PCAn pin
16-bit Capture Mode, capture triggered by the
X 0 ! 0 0 0 X falling edge on CCPn/PCAn pin
16-bit Capture Mode, capture triggered by the
X ! ! 0 0 ¢ X transition on CCPn/PCAn pin
1 0 0 1 0 0 X |16-bit software timer
1 0 0 1 1 0 X |16-bit high-speed output

10.3.1 PCA Capture Mode

To use one of the PCA modules in the capture mode either one or both of the CCAPM bits — CAPPn
and CAPNn, for the module must be set. The external CCPn input (CCP0/P1.3, CCP1/P1.4 or CCP0/
P4.2, CCP1/P4.3) for the module is sampled for a transition. When a valid transition occurs, the
PCA hardware loads the value of the PCA counter register(CH and CL) into the module’s capture
registers(CCAPnH and CCAPnL). If the CCFn bit for the module in the CCON SFR and the ECCFn
bit in the CCAPMn SFR are set then an interrupt will be generated.

[cF | cr [- |

— | ccri | ccro |ccoN (address:DgH)

CCPn —
(CCPO/P1.3,

CCP1.P1.4)

[]

=
|

| E— —J
A
Lzl—nm interrupt

Capture

CCAPMn, n=0,1
Address: DAhXDBh

| - |ECOMn| CAPPn|C;PNn| MATn | TOGn |PWMn |ECCFn
0 0 0 0

PCA Capture Mode

2908 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

10.3.2 16-bit Software Timer Mode

The PCA modules can be used as software timers by setting both the ECOMn and MATn bits in the modules
CCAPMn register. The PCA timer will be compared to the module’s capture registers and when a match occurs an
interrupt will be generated if the CCFn and ECCFn bits for the module are both set.

write first write late
Write to CCAPnL Write to CCAPnHl CF | CR | _ | _ | _ | _ |CCF1 | CCFOlCCON
Stop comparing Renew comparing - -[.,_E_»
0 1
[ccapnn [ccapaL R
nterrup
(To CCFn)

Enable 16-Bit comparator [Match IO/ I
1 |

TT|Tj|

o

if ECOMn=0,|Stop comparing
if ECOMn=0,|renew comparing

| - |ecomn [cappn|capnn|maTn ToGn pwmi| ECCEn |cCAPMY
o 0 1 0 o

PCA Software Timer Mode

STC MCU Limited. website: www.STCMCU.com 299

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

10.3.3 High Speed Output Mode

In this mode the CCPn output (port latch) associated with the PCA module will toggle each time a match occurs
between the PCA counter and the module’s capture registers. To activate this mode the TOGn,MATn,and ECOMn
bits in the module’s CCAPMn SFR must be set.

write first write late
Write to CCAPnL Write to CCAPnH | CF | CR | _ | _ | _ | _ | CCF1 | CCFO | CCON
L
Stop comparing Renew comparing A
0 i [ccapnn [ccapnL| .

PCA Interrupt
(To CCFn)

Enable 16-Bit comparator %_ Tosel

oggle

|| | | CCPn
| o |

if ECOMn=0,|Stop comparing | CH
if ECOMn=0,[renew comparing

| - |Ecomn|cappa|capnn|maTn|ToGn pwwmi| ECCER|cCAPMA
o0 1 1 _ o0

PCA High-Speed Output Mode

300 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

10.3.4 Pulse Width Modulator Mode (PWM mode)

All of the PCA modules can be used as PWM outputs. The frequency of the output depends on the
source for the PCA timer. All of the modules will have the same frequency of output because they all
share the same PCA timer. The duty cycle of each module is independently variable using the module’
s capture register CCAPnL and EPCnL bit in PCAPWMn register. When the value of the PCA CL SFR
is less than the value in the module’s {EPCnL,CCAPnL} SFR, the output will be low. When it is equal
to or greater than , the output will be high. When CL overflows from FFH to 00H, {EPCnL,CCAPnL}
is reloaded with the value in {EPCnH,CCAPnH}. That allows updating the PWM without glitches.
The PWMn and ECOMn bits in the module’s CCAPMn register must be set to enable the PWM mode.

when CPS2 / CPS1/ CPS0 = 1/0/0, PCA, PWM clock source is SYSclk.

EPCnH |CCAPnH

Disable Timer 0, the frequency of PWM is SYSclk / 256.

If the System Clock/3 is need to be used as PCA clock source, TO should
» be enabled in 1T mode and spill after counting three pulse. And internal
R/C oscillator is used as System Clock, which can output PWM with
14KHz to 19KHz frequency.

EPCnL | CCAPnL TO's overflow can divide the frequency of system clock for 1 ~ 256 levels.

! l output 0

(0,CL)<(EPCnL,CCPnL)

enable 9-BIT .—»EP WMn
CCPn

COMPARATOR 1 T >=(EPCnL,CCPnL)

i output 1

\

CL overflow

[- [ecomn[cappn [capnn|mamn | ToGn [PWMn [ECCEn|ccAPMN, n=0,1
1 0 0 0 0 1 0

PCA PWM mode

STC MCU Limited. website: www.STCMCU.com 301

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

10.4 Programs for PCA module extended external interrupt (C and ASM)

There are two programs for PCA module extended external interrupt demo, one wrriten in C language and the
other in assembly language.

1. C code listing:

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU PCA module Extended external interrupt ----*/
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"
#include "intrins.h"

typedef unsigned char BYTE;
typedef unsigned int WORD;

/*Declare SFR associated with the PCA */

sfr CCON =0xD§; //PCA control register

sbit CCFO0 =CCON"0; //PCA module-0 interrupt flag

sbit CCFl =CCON"I1; //PCA module-1 interrupt flag

sbit CR = CCON"6; //PCA timer run control bit

sbit CF = CCON"7; //PCA timer overflow flag

sfr CMOD =0xD9; //PCA mode register

sfr CL = 0xE9; //PCA base timer LOW

sfr CH = 0xF9; //PCA base timer HIGH

sfr CCAPMO= 0xDA; //PCA module-0 mode register

sfr CCAPOL = 0xEA; //PCA module-0 capture register LOW
sfr CCAPOH = 0xFA; //PCA module-0 capture register HIGH
sfr CCAPMI1=0xDB; //PCA module-1 mode register

sfr CCAPIL = 0xEB; //PCA module-1 capture register LOW
sfr CCAP1H= 0xFB; //PCA module-1 capture register HIGH
sfr PCAPWMO0=0x12;

sfr PCAPWMI1=0x{3;

sbit PCA_LED =P170; //PCA test LED

void PCA_isr() interrupt 7 using 1
{
CCF0 = 0; //Clear interrupt flag
PCA LED =!PCA LED; /toggle the test pin while CCPO(P1.3) have a falling edge

302 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

void main()

{
CCON = 0;

CL=0;

CH =0;

CMOD = 0x00;

CCAPMO = 0x11;
/! CCAPMO = 0x21;
/! CCAPMO = 0x31;

CR=1;

EA=1;

while (1);

2. Assembly code listing:

//nitial PCA control register

//PCA timer stop running
/IClear CF flag

//Clear all module interrupt flag
//Reset PCA base timer

//Set PCA timer clock source as Fosc/12
//Disable PCA timer overflow interrupt
//PCA module-0 capture by a negative tigger on CCPO(P1.3)

//land enable PCA interrupt

//PCA module-0 capture by a rising edge on CCPO(P1.3)

//land enable PCA interrupt

//PCA module-0 capture by a transition (falling/rising edge)
/lon CCPO(P1.3) and enable PCA interrupt

//PCA timer start run

J/* */

;/* ——- STC MCU International Limited */

;/¥ --- STC 1T Series MCU PCA module Extended external interrupt ---------- */

;/* —-- Mobile: (86)13922809991 */

;/* —-- Fax: 86-755-82905966 */

;/* - Tel: 86-755-82948412 */

:/* - Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */

;/* article, please specify in which data and procedures from STC ~ */

J/* */

;/*Declare SFR associated with the PCA */
CCON EQU 0D8H ;PCA control register
CCFO0 BIT CCON.0 ;PCA module-0 interrupt flag
CCF1 BIT CCON.1 ;PCA module-1 interrupt flag
CR BIT CCON.6 ;PCA timer run control bit
CF BIT CCON.7 ;PCA timer overflow flag
CMOD EQU 0D9H ;PCA mode register
CL EQU 0E9H ;PCA base timer LOW
CH EQU 0F9H ;PCA base timer HIGH

STC MCU Limited.

website:

www.STCMCU.com 303

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
CCAPMO EQU 0DAH ;PCA module-0 mode register
CCAPOL EQU 0EAH ;PCA module-0 capture register LOW
CCAPOH EQU OFAH ;PCA module-0 capture register HIGH
CCAPM1 EQU 0DBH ;PCA module-1 mode register
CCAPIL EQU OEBH ;PCA module-1 capture register LOW
CCAPIH EQU OFBH ;PCA module-1 capture register HIGH
PCA_LED BIT P1.0 ;PCA test LED
ORG 0000H
LIMP MAIN
ORG 003BH
PCA_ISR:
CLR CCFO0 ;Clear interrupt flag
CPL PCA _LED stoggle the test pin while CCPO(P1.3) have a falling edge
RETI
ORG 0100
MAIN:
MOV CCON, #0 ;Initial PCA control register
;PCA timer stop running
;Clear CF flag
;Clear all module interrupt flag
CLR A R
MOV CL, A ;Reset PCA base timer
MOV CH, A ;
MOV CMOD, #00H ;Set PCA timer clock source as Fosc/12
;Disable PCA timer overflow interrupt
MOV CCAPMO, #11H ;PCA module-0 capture by a falling edge on CCPO(P1.3)
;and enable PCA interrupt
; MOV CCAPMO, #21H ;PCA module-0 capture by a rising edge on CCPO(P1.3)
;and enable PCA interrupt
; MOV CCAPMO, #31H ;PCA module-0 capture by a transition (falling/rising edge)
;on CCPO(P1.3) and enable PCA interrupt
SETB CR ;PCA timer start run
SETB EA
SIMP §
END

304 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
10.5 Demo Programs for PCA module acted as 16-bit Timer (C and ASM)

There are two programs for PCA module acted as 16-bit Timer demo, one wrriten in C language and the other in
assembly language.

1. C code listing:

J* */
;/* --- STC MCU International Limited */
;/* -——- STC 1T Series MCU PCA module acted as 16-bit Timer Demo --------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
;/* ——- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC ~ */
;% */

#include "reg51.h"
#include "intrins.h"

#define FOSC 18432000L
#define T100Hz (FOSC/ 12/ 100)

typedef unsigned char BYTE,;
typedef unsigned int WORD;

/*Declare SFR associated with the PCA */

sfr CCON = 0xDg; //PCA control register

sbit CCFO = CCON"0; //PCA module-0 interrupt flag

sbit CCF1 = CCON"I, //PCA module-1 interrupt flag

sbit CR = CCON"6; //PCA timer run control bit

sbit CF = CCON"T7; //PCA timer overflow flag

sfr CMOD = 0xD9; //PCA mode register

sfr CL = OxE9; //PCA base timer LOW

sfr CH = OxF9; //PCA base timer HIGH

sfr CCAPMO= 0xDA; //PCA module-0 mode register

sfr CCAPOL = OxEA; //PCA module-0 capture register LOW
sfr CCAPOH= O0xFA; //PCA module-0 capture register HIGH
sfr CCAPMI1= 0xDB; //PCA module-1 mode register

sfr CCAPIL = OxEB; //PCA module-1 capture register LOW
sfr CCAPIH= O0xFB; //PCA module-1 capture register HIGH
sfr PCAPWMO0=0x12;

sfr PCAPWMI1=0x{3;

sbit PCA_LED = PI"0; //PCA test LED

BYTE cnt;

WORD value;

STC MCU Limited. website: www.STCMCU.com 305

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

void PCA_isr() interrupt 7 using 1

{
CCF0 =0; //Clear interrupt flag
CCAPOL = value;
CCAPOH = value >> §; //Update compare value
value += T100Hz;
if (ent-- == 0)
{
cnt = 100; //Count 100 times
PCA LED=!PCA LED; //Flash once per second
}
}
void main()
{
CCON = 0; //nitial PCA control register
//PCA timer stop running
/IClear CF flag
//Clear all module interrupt flag
CL=0; //Reset PCA base timer
CH=0;
CMOD = 0x00; //Set PCA timer clock source as Fosc/12
//Disable PCA timer overflow interrupt
value = T100Hz;
CCAPOL = value;
CCAPOH = value >> 8; //Initial PCA module-0
value += T100Hz;
CCAPMO = 0x49; //PCA module-0 work in 16-bit timer mode
//and enable PCA interrupt
CR=1; //PCA timer start run
EA=1;
cnt=0;
while (1);
}

306 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

2. Assembly code listing:

J/* */
;/* ——- STC MCU International Limited */
;/* - STC 1T Series MCU PCA module acted as 16-bit Timer Demo --------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* - Tel: 86-755-82948412 */

/% ——- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the */

;/* article, please specify in which data and procedures from STC ~ */

J/* */

T100Hz

EQU

;/*Declare SFR associated with the PCA */

3CO00H

;18432000 / 12 / 100)

CCON EQU 0D8H ;PCA control register
CCFO0 BIT CCON.O ;PCA module-0 interrupt flag
CCF1 BIT CCON.1 ;PCA module-1 interrupt flag
CR BIT CCON.6 ;PCA timer run control bit
CF BIT CCON.7 ;PCA timer overflow flag
CMOD EQU 0D9H ;PCA mode register
CL EQU 0E9H ;PCA base timer LOW
CH EQU 0F9H ;PCA base timer HIGH
CCAPMO EQU 0DAH ;PCA module-0 mode register
CCAPOL EQU 0EAH ;PCA module-0 capture register LOW
CCAPOH EQU OFAH ;PCA module-0 capture register HIGH
CCAPMI1 EQU 0DBH ;PCA module-1 mode register
CCAPIL EQU 0OEBH ;PCA module-1 capture register LOW
CCAPIH EQU OFBH ;PCA module-1 capture register HIGH
PCA_LED BIT P1.0 ;PCA test LED
CNT EQU 20H
ORG 0000H
LIMP MAIN
ORG 003BH
LIMP PCA_ISR
ORG 0100H
MAIN:
MOV SP, #3FH ;Initial stack point
MOV CCON #0 ;Initial PCA control register
;PCA timer stop running
;Clear CF flag
;Clear all module interrupt flag
STC MCU Limited. website: www.STCMCU.com 307

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412 Fax:86-755-82905966

CLR A ;
MOV CL, A ;Reset PCA base timer
MOV CH, A ;
MOV CMOD, #00H ;Set PCA timer clock source as Fosc/12
;Disable PCA timer overflow interrupt
MOV CCAPOL, #LOW T100Hz ;
MOV CCAPOH, #HIGH T100Hz ;Initial PCA module-0
MOV CCAPMO, #49H ;PCA module-0 work in 16-bit timer mode
;and enable PCA interrupt
SETB CR ;PCA timer start run
SETB EA
MOV CNT, #100
SIMP §
PCA_ISR:
PUSH PSW
PUSH ACC
CLR CCFO0 ;Clear interrupt flag
MOV A, CCAPOL
ADD A, #LOW T100Hz ;Update compare value
MOV CCAPOL, A
MOV A, CCAPOH
ADDC A, #HIGH T100Hz
MOV CCAPOH, A
DINZ CNT, PCA ISR _EXIT ;count 100 times
MOV CNT, #100
CPL PCA _LED ;Flash once per second
PCA_ISR_EXIT:
POP ACC
POP PSW
RETI
END
308 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

10.6 Programs for PCA module as 16-bit High Speed Output(C and ASM)

There are two programs for PCA module as 16-bit High Speed Output, one wrriten in C language and the other in
assembly language.

1. C code listing:

e */
;/* -—- STC MCU International Limited */
;/* --- STC 1T Series MCU PCA module as 16-bit High Speed Output ----*/
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */
i* K

#include "reg51.h"
#include "intrins.h"

#define FOSC 18432000L
#define T100KHz (FOSC /4 /100000)

typedef unsigned char BYTE;

typedef unsigned int WORD;

/*Declare SFR associated with the PCA */

sfr CCON = 0xD§; //PCA control register

sbit CCFO0 = CCON"0; //PCA module-0 interrupt flag

sbit CCF1 = CCON"I; //PCA module-1 interrupt flag

sbit CR = CCON"6; //PCA timer run control bit

sbit CF = CCON"7; //PCA timer overflow flag

sfr CMOD = 0xD9; //PCA mode register

sfr CL = 0xE9; //PCA base timer LOW

sfr CH = 0xF9; //PCA base timer HIGH

sfr CCAPMO = 0xDA; //PCA module-0 mode register

sfr CCAPOL = O0xEA; //PCA module-0 capture register LOW
sfr CCAPOH = OxFA; //PCA module-0 capture register HIGH
sfr CCAPM1 = 0xDB; //PCA module-1 mode register

sfr CCAPIL = OxEB; //PCA module-1 capture register LOW
sfr CCAPI1H = O0xFB; //PCA module-1 capture register HIGH
sfr PCAPWMO = 0xf2;

sfr PCAPWMI = 0xf3;

sbit PCA LED = PI"0; //PCA test LED

BYTE cnt;

WORD value;

STC MCU Limited. website: www.STCMCU.com 309

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

void PCA_isr() interrupt 7 using 1

{
CCF0 = 0; //Clear interrupt flag
CCAPOL = value;
CCAPOH = value >> §; //Update compare value
value +=T100KHz;
H
void main()
{
CCON = 0; //Initial PCA control register
//PCA timer stop running
//Clear CF flag
//Clear all module interrupt flag
CL=0; //Reset PCA base timer
CH=0;
CMOD = 0x02; //Set PCA timer clock source as Fosc/2
//Disable PCA timer overflow interrupt
value = T100KHz;
CCAPOL = value; //P1.3 output 100KHz square wave
CCAPOH = value >> §; //Initial PCA module-0
value += T100KHz;
CCAPMO = 0x4d; //PCA module-0 work in 16-bit timer mode
//and enable PCA interrupt, toggle the output pin CCPO(P1.3)
CR=1; //PCA timer start run
EA=1;
cnt=0;
while (1);
H

310 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

2. Assembly code listing:

i

*/

;/* -—- STC MCU International Limited

*/

;/¥ === STC 1T Series MCU PCA module as 16-bit High Speed Output ----*/

;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
3/ --- Tel: 86-755-82948412 */
;/* --- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC ~ */
¥ */
T100KHz EQU 2EH ;(18432000 /4 / 100000)
;/*Declare SFR associated with the PCA */
CCON EQU 0D8H ;PCA control register
CCFO0 BIT CCON.O ;PCA module-0 interrupt flag
CCF1 BIT CCON.1 ;PCA module-1 interrupt flag
CR BIT CCON.6 ;PCA timer run control bit
CF BIT CCON.7 ;PCA timer overflow flag
CMOD EQU 0D9H ;PCA mode register
CL EQU O0E9H ;PCA base timer LOW
CH EQU 0F9H ;PCA base timer HIGH
CCAPMO EQU 0DAH ;PCA module-0 mode register
CCAPOL EQU 0EAH ;PCA module-0 capture register LOW
CCAPOH EQU OFAH ;PCA module-0 capture register HIGH
CCAPM1 EQU 0DBH ;PCA module-1 mode register
CCAPIL EQU 0OEBH ;PCA module-1 capture register LOW
CCAPIH EQU OFBH ;PCA module-1 capture register HIGH
ORG 0000H
LIMP MAIN
ORG 003BH
PCA_ISR:
PUSH PSW
PUSH ACC
CLR CCFO0 ;Clear interrupt flag
MOV A, CCAPOL
ADD A, #T100KHz ;Update compare value
MOV CCAPOL,A
CLR A
ADDC A, CCAPOH
STC MCU Limited. website: www.STCMCU.com 311

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

MOV CCAPOH, A
PCA ISR _EXIT:
POP ACC
POP PSW
RETI
ORG 0100H
MAIN:
MOV CCON, #0 ;Initial PCA control register
;PCA timer stop running
;Clear CF flag
;Clear all module interrupt flag
CLR A ;
MOV CL, A ;Reset PCA base timer
MOV CH, A ;
MOV CMOD, #02H ;Set PCA timer clock source as Fosc/2
;Disable PCA timer overflow interrupt
MOV CCAPOL,#T100KHz ;P1.3 output 100KHz square wave
MOV CCAPOH.#0 ;Initial PCA module-0
MOV CCAPMO,#4dH ;PCA module-0 work in 16-bit timer mode and enable
;PCA interrupt, toggle the output pin CEX0(P1.3)
SETB CR ;PCA timer start run
SETB EA
SIMP §
END
312 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

10.7 Demo Programs for PCA module as PWM QOutput (C and ASM)

1. C code listing:

* */
;/* --- STC MCU International Limited */
;/*¥ -=- STC 1T Series MCU PCA module output PWM wave Demo ----------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC ~ */
/% */
#include "reg51.h"
#include "intrins.h"
#define FOSC 18432000L
typedef unsigned char BYTE;
typedef unsigned int WORD;
/*Declare SFR associated with the PCA */
sfr CCON = 0xD§; //PCA control register
sbit CCFO0 = CCON"0; //PCA module-0 interrupt flag
sbit CCF1 = CCON"I; //PCA module-1 interrupt flag
sbit CR = CCON"6; //PCA timer run control bit
sbit CF = CCON"T7; //PCA timer overflow flag
sfr CMOD = 0xD9; //PCA mode register
sfr CL = 0xE9; //PCA base timer LOW
sfr CH = 0xF9; //PCA base timer HIGH
sfr CCAPMO= 0xDA; //PCA module-0 mode register
sfr CCAPOL = OxEA; //PCA module-0 capture register LOW
sfr CCAPOH= O0xFA; //PCA module-0 capture register HIGH
sfr CCAPMI1= 0xDB; //PCA module-1 mode register
sfr CCAPIL = OxEB; //PCA module-1 capture register LOW
sfr CCAPIH= O0xFB; //PCA module-1 capture register HIGH
sfr PCAPWMO0=0x12;
sfr PCAPWMI1=0x{3;

void main()

{
CCON=0; //nitial PCA control register
//PCA timer stop running
//Clear CF flag
//Clear all module interrupt flag
STC MCU Limited.

website: www.STCMCU.com 313

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

CL=0;
CH=0;
CMOD = 0x02;

CCAPOH = CCAPOL = 0x80;
CCAPMO = 0x42;

CCAPIH = CCAPIL = 0xff;
PCAPWMI1 = 0x03;
CCAPM1 = 0x42;

//Reset PCA base timer

//Set PCA timer clock source as Fosc/2

//Disable PCA timer overflow interrupt

//PWMO port output 50% duty cycle square wave
//PCA module-0 work in 8-bit PWM mode

//land no PCA interrupt

//PWMI1 port output 0% duty cycle square wave

//PCA module-1 work in 8-bit PWM mode

//land no PCA interrupt
CR=1; //PCA timer start run
while (1);
}
2. Assembly code listing:
* */
;/* -—- STC MCU International Limited */
;/* --- STC 1T Series MCU PCA module output PWM wave Demo ----------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
/% - Tel: 86-755-82948412 */
;/* -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC ~ */
¥ */
;/*Declare SFR associated with the PCA */
CCON EQU 0DS8H ;PCA control register
CCFO0 BIT CCON.0 ;PCA module-0 interrupt flag
CCF1 BIT CCON.1 ;PCA module-1 interrupt flag
CR BIT CCON.6 ;PCA timer run control bit
CF BIT CCON.7 ;PCA timer overflow flag
CMOD EQU 0D9H ;PCA mode register
CL EQU 0E9H ;PCA base timer LOW
CH EQU 0F9H ;PCA base timer HIGH
CCAPMO EQU 0DAH ;PCA module-0 mode register
CCAPOL EQU 0EAH ;PCA module-0 capture register LOW
CCAPOH EQU OFAH ;PCA module-0 capture register HIGH
CCAPM1 EQU 0DBH ;PCA module-1 mode register
CCAPIL EQU 0OEBH ;PCA module-1 capture register LOW
CCAPIH EQU OFBH ;PCA module-1 capture register HIGH

314 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
ORG 0000H
LIMP MAIN
ORG 0100H
MAIN:
MOV CCON, #0 ;Initial PCA control register
;PCA timer stop running
;Clear CF flag
;Clear all module interrupt flag
CLR A ;Reset PCA base timer
MOV CL, A ;
MOV CH, A ;
MOV CMOD, #02H ;Set PCA timer clock source as Fosc/2
;Disable PCA timer overflow interrupt
MOV A, #080H ;PWMO port output 50% duty cycle square wave
MOV CCAPOH, A ;
MOV CCAPOL, A ;
MOV CCAPMO, #42H ;PCA module-0 work in 8-bit PWM mode
;and no PCA interrupt
MOV A, #0COH ;PWMI port output 25% duty cycle square wave
MOV CCAPIHA ;
MOV CCAPIL,A ;
MOV CCAPMI1 #42H ;PCA module-1 work in 8-bit PWM mode
;and no PCA interrupt
SETB CR ;PCA timer start run
SIMP §
END
STC MCU Limited. website: www.STCMCU.com 315

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

10.8 Demo Program for PCA clock base on Timer 1 overflow rate

¥ */
;/* -—- STC MCU International Limited */
;/*¥ --- STC 1T Series achieve adjustable frequency PWM output-----*/
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* - Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC ~ */
¥ */

;/*Declare SFR associated with the ADC */

IPH EQU 0B7H ;Interrupt priority control register high byte
CCON EQU 0D8H ;PCA control register

CCF0 BIT CCON.0 ;PCA module-0 interrupt flag

CCF1 BIT CCON.1 ;PCA module-1 interrupt flag

CR BIT CCON.6 ;PCA timer run control bit

CF BIT CCON.7 ;PCA timer overflow flag

CMOD EQU 0D9H ;PCA mode register

CL EQU OE9H ;PCA base timer LOW

CH EQU 0F9H ;PCA base timer HIGH

CCAPMO EQU ODAH ;PCA module-0 mode register
CCAPOL EQU OEAH ;PCA module-0 capture register LOW
CCAPOH EQU OFAH ;PCA module-0 capture register HIGH
CCAPM1 EQU 0DBH ;PCA module-1 mode register
CCAPIL EQU OEBH ;PCA module-1 capture register LOW
CCAPIHEQU OFBH ;PCA module-1 capture register HIGH

;/*Define working LED */

LED MCU _START EQU P1.7
LED Sms_Flashing EQU P1.6
LED 1S Flashing EQU P1.5

Channel 5SmS H EQU 01H ;PCA module-1 5ms counter high byte @ 18.432MHz
Channel 5SmS L EQU 00H ;PCA module-1 5ms counter low byte @ 18.432MHz
Timer0 Reload 1 EQU OF6H ;Timer0 auto reload value (-10)

Timer0 Reload 2 EQU OECH ;Timer0 auto reload value (-20)

PWM WIDTH EQU OFFH ;low duty

Counter EQU 030H ;counter value

316 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

ORG 0000H
LIMP MAIN
ORG 003BH
LIMP PCA_interrupt
ORG 0050H
MAIN:
CLR LED MCU _START ;Turn on MCU working LED
MOV SP#7FH
MOV Counter,#0 ;initial Counter var
ACALL PAC_Initial ;initial PCA
ACALL TimerO_Initial ;Initial TimerO
MAIN_Loop:
MOV THO,#Timer0 Reload_1 ;Set Timer0 overload rate 1
MOV TLO#Timer0_Reload_1
MOV A#PWM_WIDTH ;setting duty
MOV CCAPOH,A
ACALL delay
MOV THO,#Timer0 Reload 2 ;Set Timer(overload rate 2
MOV TLO#Timer0_Reload 2
ACALL delay
MOV THO,#Timer0 Reload_1 ;Set Timer0 overload rate 1
MOV TLO#Timer0_Reload_1
MOV A#PWM_WIDTH
ACALL RL A ;change duty
ACALL RL_A
MOV CCAPOH,A
ACALL delay
MOV THO,#Timer0 Reload 2 ;Set Timer(overload rate 2
MOV TLO,#Timer0_Reload 2
ACALL delay
MOV THO,#Timer0 Reload_1 ;Set Timer0 overload rate 1
MOV TLO#Timer0_Reload_1
MOV A#PWM_WIDTH
ACALL RL A ;change duty
STC MCU Limited. website: www.STCMCU.com 317

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
ACALL RL_A
ACALL RL_A
ACALL RL A
MOV CCAPOH,A
ACALL delay
MOV THO,#Timer0 Reload 2 ;Set Timer(overload rate 2
MOV TLO#Timer0_Reload 2
ACALL delay
SIMP MAIN_Loop
RL_A:
CLR C
RRC A
RET
Timer0_Initial:
MOV TMOD,#02H ;8-bit auto-reload
MOV THO#Timer0 Reload 1
MOV TLO#Timer0 Reload 1
SETB TRO ;strat run
RET
PCA_Initial:
MOV CMOD,#10000100B ;PCA timer base on TimerQ
MOV CCON,#00H ;PCA stop count
MOV CL,#0 ;initial PCA counter
MOV CH#0
MOV CCAPMO,#42H ;PCA module-0 as 8-bit PWM
MOV PCA PWMO#0 ;PWM mode 9" bit
; MOV PCA_PWMO,#03H ;PWM will keep low level
MOV CCAPIL#Channel 5SmS L ;initial PCA module-1
MOV CCAPIH#Channel 5SmS H
MOV CCAPMI1,#49H ;PCA module-1 as 16-bit timer
SETB EA
SETB CR ;PCA counter start running
RET

318 STC MCU Limited. website:

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
PCA_Interrupt:
PUSH ACC
PUSH PSW
CPL LED 5mS Flashing ;Flashing once per Sms
MOV A#Channel 5SmS L
ADD A,CCAPIL
MOV CCAPIL,A
MOV A #Channel 5SmS H
ADDC A,CCAPIH
MOV CCAPIHA
CLR CCF1 ;Clear PCA module-1 flag
INC Counter
MOV A,Counter
CLR C
SUBB A #100 ;Count 100 times
JC PCA_Interrupt Exit
MOV Counter,#0
CPL LED_1S,Flash
PCA Interrupt Exit:
POP PSW
POP ACC
RETI
delay:
CLR A
MOV RLA
MOV R2A
MOV R3#30H
delay loop:
NOP
NOP
NOP
DINZ Rl,delay loop
DINZ R2,delay loop
DINZ R3.,delay loop
RET
END
STC MCU Limited. website: www.STCMCU.com 319

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

10.9 Using PWM achieve D/A Conversion function reference circuit

P22 [

P23 []

RST [

RxD/P3.0]

TxD/P3.1 [

P0.0]

XTAL2]

XTAL1 [}

INTO/P3.2]}

Po.1 [

INT1/P3.3]
CLKOUTO/ECI/TO/P3.4]
CLKOUT1/PWMI/T1/P3.5]
P24 [

P2.5 [

vss 1

/

7€-dOS

[1VDD
[P21
[1P2.0

[1P1.7/ADC7
[1P1.6/ADC6
[1P1.5/ADC5
[1P03

[1P1.4/ADC4
[1P1.3/ADC3
[1P02

[]P1.2/ADC2/LVD

[1PL.I/ADCI

[1PL.O/ADCO

1 p3.7/PWMO —]

[P27
[1P26

10K 10K D/A
104 II 104:|__I

320 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Chapter 11. Serial Peripheral Interface (SPI)

STC12C5A60S2 p.rovides another high-speed serial communication interface, the SPI interface.
SPI is a full-duplex, high-speed, synchronous communication bus with two operation modes: Master
mode and Slave mode. Up to 3Mbit/s can be supported in either Master or Slave mode under the
SYSclk=12MHz. Two status flags are provided to signal the transfer completion and write-collision
occurrence.

11.1 Special Function Registers related with SPI
SPI Management SFRs

Bit address and Symbol Reset

B7 | B6 B5 B4 | B3 | B2 | Bl B0 | Value
SPCTL |[SPI Control Register [CEH |SSIG| SPEN [DORD | MSTR |CPOL|CPHA| SPRI | SPRO [0000,0100

Mnemonic Description Address

SPSTAT [SPI Status Register CDH | SPIF | WCOL - - - - - - 00xX,XXXX
SPDAT [SPI Data Register CFH 0000,0000
AUXRI1 |Auxiliary Register 1 A2H - |PCA_P4|SPI P4|S2 P4 | GF2 | ADRJ - DPS |x000,00x0

1. SPI Control register: SPCTL (Non bit-addressable)

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
SPCTL CEH | name | SSIG | SPEN | DORD | MSTR | CPOL | CPHA | SPR1 | SPRO

SSIG : Control whether SS pin is ignored or not.
If SSIG=1, MSTR(SPCTL.4) decides whether the device is a master or slave.
If SSIG=0, the SS pin decides whether the device is a master or slave. SS pin can be used as I/O port.

SPEN : SPI enable bit.
If SPEN=0, the SPI interface is disabled and all SPI pins will be general-purpose I/O ports.
If SPEN=1, the SPI is enabled.

DORD : Set the transmitted or received SPI data order.
If DORD=1, The LSB of the data word is transmitted first.
If DORD=0, The MSB of the data word is transmitted first.

MSTR : Master/Slave mode select bit.
If MSTR=0, set the SPI to play as Slave part.
If MSTR=1, set the SPI to play as Master part.

CPOL : SPI clock polarity select bit.
If CPOL=1, SPICLK is high level when in idle mode. The leading edge of SPICLK is the falling edge
and the trailing edge is the rising edge.
If CPOL=0, SPICLK is low when idle. The leading edge of SPICLK is the rising edge and the trailing
edge is the falling edge.
CPHA : SPI clock phase select bit.
If CPHA=1, Data is driven on the leading edge of SPICLK, and is sampled on the trailing edge.
If CPHA=0, Data is driven when SS pin is low (SSIG=0) and changes on the trailing edge of SPICLK.
Data is sampled on the leading edge of SPICLK. (Note : If SSIG=1, CPHA must not be 0,
otherwise the operation is undefined)

STC MCU Limited. website: www.STCMCU.com 321

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

SPR1-SPRO : SPI clock rate select bit (when in master mode)
SPI clock frequency select bit

SPR1 | SPRO SPI clock (SCLK)
0 0 CPU_CLK/4
0 1 CPU_CLK/16
1 0 CPU_CLK/64
1 1 CPU_CLK/128

CPU_CLK is CPU clock.

When CPHA equals 0, SSIG must be 0 and SS pin must be negated and reasserted between each successive serial
byte transfer. If the SPDAT register is written while SS is active(0), a write collision error results and WCOL is
set.

When CPHA equals 1, SSIG may be 0 or 1. If SSIG=0, the SS pin may remain active low between successive

transfers(can be tied low at any times). This format is sometimes preferred for use in systems having a signle
fixed master and a single slave configuration.

2. SPI State register: SPSTAT (Non bit-addressable)

SFR name | Address | bit B7 B6 B5 B4 B3 B2 B1 BO
SPSTAT CDH |name| SPIF | WCOL - - - - - _

SPIF : SPI transfer completion flag.
When a serial transfer finishes, the SPIF bit is set and an interrupt is generated if both the ESPI (IE.6) bit
and the EA (IE.7) bit are set. If SS is an input and is driven low when SPI is in master mode with SSIG = 0,
SPIF will also be set to signal the “mode change”.The SPIF is cleared in software by “writing 1 to this
bit”.

WCOL: SPI write collision flag.
The WCOL bit is set if the SPI data register, SPDAT, is written during a data transfer. The WCOL flag is
cleared in software by “writing 1 to this bit”.

3. SPI Data register : SPDAT (Non bit-addressable)

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
SPDAT CFH |name
The SFR SPDAT holds the data to be transmitted or the data received.

322 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

4. Register swicthing SPI function from P1 port to P4 port : AUXRI1 (Non bit-addressable)

SFR name |Address| bit B7 B6 B5 B4 B3 B2 | B1 | BO | Reset Value
AUXRI1 A2H | name - |PCA P4|SPI P4|S2 P4| GF2 [ADRJ| - | DPS | x000,00x0
PCA P4

0 : Default. The PCA function is on P1[4:2]

1 : The PCA function on P1[4:2] is switched to P4[3:1].
ECI is switched from P1.2 to P4.1
PCAO0/PWMO is switched from P1.3 to P4.2
PCA1/PWMI is switched from P1.4 to P4.3

SPI P
0 : Default. The SPI function is on P1[7:4]
1 : The SPI function on P1[7:4] is switched to P4[3:0].
SCLK is switched from P1.7 to P4.3
MOSI is switched from P1.6 to P4.2
MISO is switched from P1.5 to P4.1
SS is switched from P1.4 to P4.0

S2 P4

: Default. the UART2(S2) function is on P1[3:2]

1 : The UART2(S2) function on P1[3:2] is switched to P4[3:2].
TxD2 is switched from P1.3 to P4.3
RxD2 is switched from P1.2 to P4.2

GF2 : General Flag. It can be used by software.

[«

0 : The 10-bit conversion result of ADC is arranged as {ADC RES[7:0], ADC RESL[1:0]}.
1 : The 10-bit conversion result is right-justified, {ADC RES[1:0], ADC RESL[7:0]}.

0 : Default. DPTRO is selected as Data pointer.
1 : The secondary DPTR is switched to use.

STC MCU Limited. website: www.STCMCU.com 323

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

5. Registers related with SPI interrupt : IE, IE2, IP2 and IP2H

IE: Interrupt Enable Rsgister (Bit-addressable)

SFR name | Address bit B7 B6 BS5 B4 B3 B2 B1 BO
IE A8H name EA ELVD | EADC| ES ET1 | EX1 | ETO EX0

EA : disables all interrupts.

If EA = 0,no interrupt will be acknowledged.

If EA =1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.
IE2: Interrupt Enable 2 Rsgister (Non bit-addressable)
SFR name | Address bit B7 B6 BS B4 B3 B2 B1 BO

1IE2 AFH name - - - - - - ESPI | ES2

ESPI: SPI interrupt enable bit.

If ESPI =0, SPI interrupt will be diabled.

If ESPI =1, SPI interrupt is enabled.

IP2H: Interrupt Priority High Register (Non bit-addressable)
SFR name | Address bit B7 B6 BS B4 B3 B2 B1 BO
IP2H B6H name - - - - - - PSPIH | PS2H

IP2: Interrupt Priority Register (Non bit-addressable)
SFR name | Address bit B7 B6 BS5 B4 B3 B2 B1 BO
1P2 B5H name - - - - - - PSPI PS2

PSPIH, PSPI: SPI interrupt priority control bits.
if PSPIH=0 and PSPI=0, SPI interrupt is assigned lowest priority (priority 0).
if PSPTH=0 and PSPI=1, SPI interrupt is assigned lower priority (priority 1).
if PSPIH=1 and PSPI=0, SPI interrupt is assigned higher priority (priority 2).
if PSPIH=1 and PSPI=1, SPI interrupt is assigned highest priority (priority 3).

PS2H, PS2 : Serial Port 2 (UART?2) interrupt priority control bits.
if PS2H=0 and PS2=0, UART2 interrupt is assigned lowest priority (priority 0).
if PS2H=0 and PS2=1, UART2 interrupt is assigned lower priority (priority 1).
if PS2H=1 and PS2=0, UART2 interrupt is assigned higher priority (priority 2).
if PS2H=1 and PS2=1, UART2 interrupt is assigned highest priority (priority 3).

324 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

11.2 SPI Structure

™15 MISO
M — Pl6
CPU clock M
l < - 8-bit shift register S MOSI
— 1/0 PL>
Clock divider read data buffer
4,16, 64, 128 control SCLK
A A “1 . P17
cloc
selection SPI clock(host) < S .
-y | >l clock logic | >\ SS
z| g A A A P14
51 %
~A A
=
viv MSTR 2l &
SPI Control <«—3PEN z
< o
=l =2 ol Z @ | It (S| R
| AEEEEEEE
|
A | SPI Control Register: SPCTL
SPI state register: SPSTAT
SPI interrupt request v
internal data bus

SPI block diagram

The SPI interface has three pins implementing the SPI functionality: SCLK(P1.7), MISO(P1.6), MOSI(P1.5). An
extra pin SS(P1.4) is designed to configure the SPI to run under Master or Slave mode. SCLK, MOSI and MISO
are typically tied together between two or more SPI devices. Data flows from master to slave on MOSI(Master
Out Slave In) pin and flows from slave to master on MISO(Master In Slave Out) pin. The SCLK signal is output
in the master mode and is input in the slave mode. If the SPI system is disabled, i.e, SPEN(SPCTL.6)=0, these
pins are configured as general-purposed I/O port(P1.4 ~ P1.7).

SS is thel slave select pin. In a typical configuration, an SPI master asserts one of its port pins to select one SPI
device as the current slave. An SPI slave device uses its SS pin to determine whether it is selected. But if SPEN=0
or SSIG(SPCTL.7) bit is 1, the SS pin is ignored. Note that even if the SPI is configured as a master(MSTR/
SPCTL.4=1), it can still be converted to a slave by driving the SS pin low. When the conversion happened, the
SPIF bit(SPSTAT.7) will be set.

Two devices with SPI interface communicate with each other via one synchronous clock signal, one input data
signal, and one output data signal. There are two concerns the user should take care, one of them is latching data
on the negative edge or positive edge of the clock signal which named polarity, the other is keeping the clock
signal low or high while the device idle which named phase. Permuting those states from polarity and phase, there
could be four modes formed, they are SPI-MODE-0, SPI-MODE-1, SPI-MODE-2, SPI-MODE-3. Many device
declares that they meet SPI machanism, but few of them are adaptive to all four modes. The STC12C5A60S2
series are flexible to be configured to communicate to another device with MODE-0, MODE-1, MODE-2 or
MODE-3 SPI, and play part of Master and Slave.

STC MCU Limited. website: www.STCMCU.com 325

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

11.3 SPI Data Communication

11.3.1 SPI Configuration
When SPI data communication, SPEN, SSIG, SS(P1.4) and MSTR jointly control the selection of master and

slave.

Table: SPI master and slave selection

326

SS MISO| MOSI | SPICLK
SPEN|SSIG (P1.4) MSTR Mode ®L6)| (PL5) P1.7) Remark
. GPI/O| GPI/O GPI/O |SPI is disabled. P1.4/P1.5/P1.6/

0 | X | PLa) X | SPhdisable |p) o) py s P17 |P1.7as GPIO,

1 0 0 Selected salve |output| input input [Selected as slave

1 1 0 |Unselected slave| Hi-Z input input (Not selected.

1 0 1->0 slave output| input input |Convert from Master to Slave
MOSI and SCLK are in high-
impedance state in order to

hich- hich- avoid bus clash when master is
Master (idle) M8 . M8 lidle. Whether is SCLK pulled
/ impedance| impedance

1 0 1 1 input up or pulled down depends on
CPOL/SPCTL.3. But it do not be
allowed that SCLK is suspended.

Master (active) output output MOSI and SCLK is strong push-
pull output.

1 1 P14 0 slave output| input input [Slave

1 1 P1.4 1 Master input | output output |Master

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

11.3.2 SPI Data Communication Modes

There are 3 SPI data communication modes: single master — single slave, dual devices configuration (both can be a
master or slave) and single master — multiple slaves.

Master

8-bit shift register | _

Slave

8-bit shift register

SPI clock
generator

1
_MISO i MISO
e ! ;
! -
MOSI : MOSI
1
_[spicLK | SPICLK.
: >
Port X /SS
1

SPI single master — single slave configuration

Master/Slave

SPI clock
generator

8-bit shift register | _

Master/Slave

8-bit shift register

1
1
MISO : MISO
- | -
“T™MosI : MOST
SPICLK 1 SPICLK
: >
/SS ! /SS

SPI clock
generator

SPI dual device configuration, both can be a master or slave

Slave #1

“I8-bit shift register

Slave #1

Master 1
1
‘NHSO : MISO
8-bit shift register| | ! B
“[most ! MOSI |
1
SPICLK ! SPICLK
SPI clock) | 1
generator . >
Port ' /SS
'
1
v | | miso |
MOSI |
SPICLK_
Port /SS i

8-bit shift register

SPI single master multiple slaves configuration

STC MCU Limited.

website:

www.STCMCU.com

327

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

In SPI, transfers are always initiated by the master. If the SPI is enabled(SPEN=1) and selected as master, any
instruction that use SPI data register SPDAT as the destination will starts the SPI clock generator and a data
transfer. The data will start to appear on MOSI about one half SPI bit-time to one SPI bit-time after it. Before
starting the transfer, the master may select a slave by driving the SS pin of the corresponding device low. Data
written to the SPDAT register of the master shifted out of MOSI pin of the master to the MOSI pin of the slave.
And at the same time the data in SPDAT register of the selected slave is shifted out of MISO pin to the MISO pin
of the master. During one byte transfer, data in the master and in the slave is interchanged. After shifting one byte,
the transfer completion flag(SPIF) is set and an interrupt will be created if the SPI interrupt is enabled.

If SPEN=1, SSIG=0, SS pin=1 and MSTR=1, the SPI is enabled in master mode. Before the instruction that use
SPDAT as the destination register, the master is in idle state and can be selected as slave device by any other
master drives the idle master SS pin low. Once this happened, MSTR bit of the idle master is cleared by hardware
and changes its state a selected slave. User software should always check the MSTR bit. If this bit is cleared by
the mode change of SS pin and the user wants to continue to use the SPI as a master later, the user must set the
MSTR bit again, otherwise it will always stay in slave mode.

The SPI is single buffered in transmit direction and double buffered in receive direction. New data for
transmission can not be written to the shift register until the previous transaction is complete. The WCOL bit is set
to signal data collision when the data register is written during transaction. In this case, the data currently being
transmitted will continue to be transmitted, but the new data which causing the collision will be lost. For receiving
data, received data is transferred into a internal parallel read data buffer so that the shift register is free to accept
a second byte. However, the received byte must be read from the data register(SPDAT) before the next byte has
been completely transferred. Otherwise the previous byte is lost. WCOL can be cleared in software by “writing 1
to the bit”.

328 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

11.3.3 SPI Data Modes

CPHA/SPCTL.2 is SPI clock phase select bit which is used to setting the clock edge of Data sample and change.

CPOL/SPCTL.3 is used to select SPI clock polarity.
The following are some typical timing diagrams which depend on the value of CPHA/SPCTL.2

SCLK(CPOL=1)

IS ‘
MOSI(input) DORD=0V/SE

DORD=1 \LSB
DORD=0 MSB
MISO(output) DORD=T LSB undefined

SS pin(if SSIG bit=0)

)_
'/_

SPI slave transfer format with CPHA=0

Clockcycle |1 |2 |3 |4 |s s |7. |8 |

SCLK(CPOL=1)

SCLK(CPOL=0) ||||||||||||||||

MOSI(input)

6D & €D 6}

R) G0 6D 6D €D
MISO(output) 1 ﬁ“sslf)‘(eX XX X X XES

SS pin(if SSIG bit=0))undefined

SPI slave transfer format with CPHA=1

STC MCU Limited. website: www.STCMCU.com

329

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Clock Cycle |1I |2I |3I |4, |5. |6. |7. |8. |

SCLK(CPOL:O)l ||||||||||||||||

MOSI(input) DORD=0 MsBy 16 54 3 2 'l
DORD=1 LSB/\ |1 3 4 5 16

MISO(output) Bgﬁgi? i }i’[ssgx 6)E(3 X ‘3‘ X 3 X § X ¢ XII:/ISS%X

SS pin(if SSIG bit=0)

SPI master transfer format with CPHA=0

Clockcyele [t |2 |3]4 |5 e |7 |8 |

SCLK(CPOL=0) |||||||||||||||I|

SCLK(CPOL=1)

MOSI(input) BORB=Y

MISO(output) BORD=0Y yssg)é(DEDED D& X B ED ¢

SS pin(if SSIG bit=0) :

SPI master transfer format with CPHA=1

*When P4SPI bit in AUXRI register is set, the function of SPI is redirected from P3[7:4] to P4[7:4]
pin by pin.

330 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

11.4 SPI Function Demo Programs (Single Master — Single Slave)
11.4.1 SPI Function Demo Programs using Interrupts (C and ASM)

The following program,written in C language and assembly language, tests SPI function and applys to SPI single
master single slave configuration.

1. C code listing:

¥ */
;/* -—- STC MCU International Limited */
;/¥ === STC 1T Series MCU SPI Demo (1 master and 1 slave) ----------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
3/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the ----*/
;/* article, please specify in which data and procedures from STC ~ ----*/
¥ */

#include "reg51.h"

#define MASTER //define:master undefine:slave
#define FOSC 18432000L
#define BAUD (256 - FOSC/32/115200)

typedef unsigned char BYTE;
typedef unsigned int WORD;
typedef unsigned long DWORD;

sfr AUXR = 0x8e; //Auxiliary register
sfr SPSTAT = Oxcd; //SPI status register
#define SPIF 0x80 //SPSTAT.7

#define WCOL 0x40 //SPSTAT.6

sfr SPCTL = Oxce; //SPI control register
#define SSIG 0x80 //ISPCTL.7

#define SPEN 0x40 //ISPCTL.6

#define DORD 0x20 //ISPCTL.5

#define MSTR 0x10 //SPCTL.4

#define CPOL 0x08 //SPCTL.3

#define CPHA 0x04 //SPCTL.2

#define SPDHH 0x00 //CPU_CLK/4
#define SPDH 0x01 /ICPU_CLK/16
#define SPDL 0x02 //ICPU_CLK/64
#define SPDLL 0x03 //ICPU_CLK/128

sfr SPDAT = O0xcf; //SPI data register
sbit SPISS = PI"3; //SPI slave select, connect to slave' SS(P1.4) pin

STC MCU Limited. website: www.STCMCU.com 331

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412 Fax:86-755-82905966

sfr IE2 = 0xAF;
#define ESPI 0x02

void InitUart();

void InitSPI();

void SendUart(BYTE dat);
BYTE RecvUart();

T

void main()

{
InitUart();
InitSPI();
1E2 |= ESPI;
EA=1;

while (1)

{
#ifdef MASTER

ACC = RecvUart();

SPISS = 0;

SPDAT = ACC;
#endif

H
T
void spi_isr() interrupt 9 using 1

{
SPSTAT = SPIF | WCOL;

#ifdef MASTER
SPISS =1;
SendUart(SPDAT);
felse
SPDAT = SPDAT;
#endif
§

T

//interrupt enable rgister 2
/TE2.1

//send data to PC
//receive data from PC

//initial UART
//initial SPI

//for master (receive UART data from PC and send it to slave,
//in the meantime receive SPI data from slave and send it to PC)

//pull low slave SS
/Ntrigger SPI send

//SPI interrupt routine 9 (004BH)
//clear SPI status

//push high slave SS

//return received SPI data

//for salve (receive SPI data from master and
// send previous SPI data to master)

332 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

void InitUart()
{
SCON = 0x5a; //set UART mode as 8-bit variable baudrate
TMOD = 0x20; /timer1 as 8-bit auto reload mode
AUXR = 0x40; /timer] work at 1T mode
TH1 =TL1 =BAUD; //115200 bps
TR1=1;
}

T

void InitSPI()
{
SPDAT = 0; //initial SPI data
SPSTAT = SPIF | WCOL; /lclear SPI status
#ifdet MASTER
SPCTL = SPEN | MSTR; //master mode
#else
SPCTL = SPEN; //slave mode
#endif
H

T

void SendUart(BYTE dat)

{
while (!TD); //wait pre-data sent
TI=0; //clear TI flag
SBUF = dat; //send current data

H

T

BYTE RecvUart()

{
while ('RI); //wait receive complete
RI=0; //clear RI flag
return SBUF; //return receive data

H

STC MCU Limited. website: www.STCMCU.com 333

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

2. Assemly code listing:

J */
;/* -—- STC MCU International Limited */
;/¥ === STC 1T Series MCU SPI Demo (1 master and 1 slave) ----------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
/% - Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the ----*/
;/* article, please specify in which data and procedures from STC ~ ----*/

/*
/l#tdefine MASTER

AUXR DATA 08EH

SPSTAT DATA 0CDH

SPIF EQU 080H
WCOL EQU 040H
SPCTL DATA 0CEH
SSIG EQU 080H
SPEN EQU 040H
DORD EQU 020H
MSTR EQU 010H
CPOL EQU 008H
CPHA EQU 004H
SPDHH EQU 000H
SPDH EQU 001H
SPDL EQU 002H
SPDLL EQU 003H
SPDAT DATA OCFH
SPISS BIT P1.3

IE2 EQU 0AFH
ESPI EQU 02H

ST T

ORG 0000H
LIMP RESET

ORG 004BH
SPI_ISR:
PUSH ACC
PUSH PSW

MOV SPSTAT, #SPIF | WCOL

*/

//define:master undefine:slave

;Auxiliary register
;SPI status register
;SPSTAT.7
:SPSTAT.6

;SPI control register
;SPCTL.7
;SPCTL.6
;SPCTL.5
;SPCTL.4
;SPCTL.3
;SPCTL.2
;CPU_CLK/4
;CPU_CLK/16
;CPU_CLK/64
;CPU_CLK/128
;SPI data register

;SPI slave select, connect to slave' SS(P1.4) pin

;interrupt enable rgister 2
JIE2.1

;SPI interrupt routine

;clear SPI status

334 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

#ifdef MASTER
SETB SPISS ;push high slave SS
MOV A, SPDAT ;return received SPI data
LCALL SEND UART
felse //for salve (receive SPI data from master and
MOV SPDAT, SPDAT ; send previous SPI data to master)
#endif
POP PSW
POP ACC
RETI
ST T
ORG 0100H
RESET:
LCALL INIT UART ;initial UART
LCALL INIT_SPI ;initial SPT
ORL 1E2, #ESPI
SETB EA
MAIN:
#ifdef MASTER //for master (receive UART data from PC and send it to slave,
LCALL RECV_UART ; in the meantimereceive SPI data from slave and send it to PC)
CLR SPISS ;pull low slave SS
MOV SPDAT, A strigger SPI send
#endif
SIMP MAIN
ST
INIT_UART:
MOV SCON, #5AH ;set UART mode as 8-bit variable baudrate
MOV TMOD, #20H stimerl as 8-bit auto reload mode
MOV AUXR, #40H stimerl work at 1T mode
MOV TLI, #0FBH ;115200 bps(256 - 18432000 / 32 / 115200)
MOV THI, #0FBH
SETB TRI
RET
ST
STC MCU Limited. website: www.STCMCU.com 335

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

INIT_SPI:

MOV SPDAT,

MOV SPSTAT,
#ifdef MASTER

MOV SPCTL,
felse

MOV SPCTL,
#endif

RET

40
#SPIF | WCOL

#SPEN | MSTR

#SPEN

ST

SEND UART:
JNB TI,
CLR TI
MOV SBUF,
RET

A

ST

RECV_UART:
JNB RIS
CLR RI
MOV A,
RET
RET

SBUF

ST

END

;initial SPI data
;clear SPI status

;master mode

;slave mode

;wait pre-data sent
;clear TI flag
;send current data

;wait receive complete
;clear RI flag
;return receive data

336

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

11.4.2 SPI Function Demo Programs using Polling (C and ASM)
1. C code listing:

¥ */
;/*¥ --- STC MCU International Limited */
;/¥ == STC 1T Series MCU SPI Demo (1 master and 1 slave) ------------ */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
3/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the ----*/
;/* article, please specify in which data and procedures from STC =~ ----*/
¥ */

#include "reg51.h"

/#tdefine MASTER //define:master undefine:slave
#define FOSC 18432000L
#define BAUD (256 - FOSC /32 /115200)

typedef unsigned char BYTE;
typedef unsigned int WORD;
typedef unsigned long DWORD;

sfr AUXR = 0x8e; //Auxiliary register
sfr SPSTAT = O0xcd; //SPI status register
#define SPIF 0x80 //SPSTAT.7

#define WCOL 0x40 //SPSTAT.6

sfr SPCTL = Oxce; //SPI control register
#define SSIG 0x80 //ISPCTL.7

#define SPEN 0x40 //ISPCTL.6

#define DORD 0x20 //ISPCTL.5

#define MSTR 0x10 //SPCTL.4

#define CPOL 0x08 //ISPCTL.3

#define CPHA 0x04 //ISPCTL.2

#define SPDHH 0x00 //CPU_CLK/4
#define SPDH 0x01 //ICPU_CLK/16
#define SPDL 0x02 //ICPU_CLK/64
#define SPDLL 0x03 //ICPU_CLK/128

sfr SPDAT = O0xcf; //SPI data register
sbit SPISS = PI173; //SPI slave select, connect to slave' SS(P1.4) pin

void InitUart();
void InitSPI();

void SendUart(BYTE dat); //send data to PC
BYTE RecvUart(); /Ireceive data from PC
BYTE SPISwap(BYTE dat); //swap SPI data between master

STC MCU Limited. website: www.STCMCU.com 337

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

T

void main()

{

}

InitUart(); //initial UART

InitSPI(); //initial SPI

while (1)

{

#ifdef MASTER //for master (receive UART data from PC and send it to slave,

//" in the meantime receive SPI data from slave and send it to PC)
SendUart(SPISwap(RecvUart()));

#else //for salve (receive SPI data from master and
ACC = SPISwap(ACC); // send previous SPI data to master)

#endif

H

T

void InitUart()
{
SCON = 0x5a; //set UART mode as 8-bit variable baudrate
TMOD = 0x20; //timer] as 8-bit auto reload mode
AUXR = 0x40; //timer]l work at 1T mode
TH1 =TL1 =BAUD; //115200 bps
TR1=1;
}

T

void InitSPI()
{
SPDAT = 0; //initial SPI data
SPSTAT = SPIF | WCOL; //clear SPI status
#ifdef MASTER
SPCTL = SPEN | MSTR; //master mode
felse
SPCTL = SPEN; //slave mode
#endif
}
338 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

T

void SendUart(BYTE dat)
{
while (!TI);
TI=0;
SBUF = dat;

}

T

BYTE RecvUart()

{
while ('RI);
RI=0;
return SBUF;

}

T T

BYTE SPISwap(BYTE dat)

//wait pre-data sent
/lclear TI flag
//send current data

//wait receive complete
//clear RI flag
//return receive data

{
#ifdef MASTER
SPISS =0; //pull low slave SS
#endif
SPDAT = dat; //trigger SPI send
while (!(SPSTAT & SPIF)); //wait send complete
SPSTAT = SPIF | WCOL; //clear SPI status
#ifdef MASTER
SPISS = 1; //push high slave SS
#endif
return SPDAT; //return received SPI data
¥
STC MCU Limited. website: www.STCMCU.com 3390

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. Assemly code listing:

e */
;/* -—- STC MCU International Limited */
;/¥ === STC 1T Series MCU SPI Demo (1 master and 1 slave) ----------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
i/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the ----*/
;/* article, please specify in which data and procedures from STC ----*/
e */
//#define MASTER //define:master undefine:slave
AUXR DATA 08EH ;Auxiliary register
SPSTAT DATA 0CDH ;SPI status register
SPIF EQU 080H ;SPSTAT.7
WCOL EQU 040H ;SPSTAT.6
SPCTL DATA O0CEH ;SPI control register
SSIG EQU 080H ;SPCTL.7
SPEN EQU 040H :SPCTL.6
DORD EQU 020H ;SPCTL.5
MSTR EQU 010H ;SPCTL.4
CPOL EQU 008H ;SPCTL.3
CPHA EQU 004H ;SPCTL.2
SPDHH EQU 000H :CPU_CLK/4
SPDH EQU 001H ;CPU_CLK/16
SPDL EQU 002H ;CPU_CLK/64
SPDLL EQU 003H ;CPU_CLK/128
SPDAT DATA OCFH ;SPI data register
SPISS BIT P1.3 ;SPI slave select, connect to slave' SS(P1.4) pin
ST

ORG 0000H

LIMP RESET

ORG 0100H
RESET:

LCALL INIT UART ;initial UART

LCALL INIT SPI ;initial SPI

340 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

//for master (receive UART data from PC and send it to slave, in the meantime

; receive SPI data from slave and send it to PC)

MAIN:
#ifdef ~MASTE
LCALL RECV_UART
LCALL SPI SWAP
LCALL SEND UART
felse
LCALL SPI SWAP
#endif
SIMP MAIN
ST T
INIT _UART:
MOV SCON, #5AH
MOV TMOD, #20H
MOV AUXR, #40H
MOV TLI, #0FBH
MOV THI, #0FBH
SETB TRI1
RET
ST T
INIT_SPI:
MOV SPDAT, #0
MOV SPSTAT, #SPIF | WCOL

#ifdef =~ MASTER

//for salve (receive SPI data from master and
; send previous SPI data to master)

;set UART mode as 8-bit variable baudrate
stimerl as 8-bit auto reload mode

stimerl work at 1T mode

;115200 bps(256 - 18432000 / 32/ 115200)

;initial SPI data
;clear SPI status

MOV SPCTL, #SPEN |MSTR ;master mode
felse
MOV SPCTL, #SPEN ;slave mode
#endif
RET
ST
SEND_UART:
INB TI, $;wait pre-data sent
CLR TI ;clear TI flag
MOV SBUF, A ;send current data
RET
ST
STC MCU Limited. website: www.STCMCU.com 341

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

RECV_UART:
JNB R, $
CLR RI
MOV A, SBUF
RET
RET

ST

SPI_SWAP:
#ifdef MASTER
CLR SPISS
#endif
MOV SPDAT, A
WAIT:
MOV A, SPSTAT
INB ACC.7, WAIT
MOV SPSTAT, #SPIF | WCOL
#ifdef MASTER

SETB SPISS
#endif
MOV A, SPDAT
RET
ST
END

;wait receive complete
;clear RI flag
;return receive data

;pull low slave SS
strigger SPI send
;wait send complete
;clear SPI status

;push high slave SS

;return received SPI data

342 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

11.5 SPI Function Demo Programs (Each other as the Master-Slave)

11.5.1 SPI Function Demo Programs using Interrupts (C and ASM)
1. C code listing:

/*

*/

/* --—- STC MCU International Limited

*/

/* --- STC12C5Axx Series MCU SPI Demo(Each other as the master-slave) --*/

/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the -------------- */
/* article, please specify in which data and procedures from STC =~ -------------- */
/* */
#include "reg51.h"

#define FOSC 18432000L

#define BAUD (256 - FOSC / 32/ 115200)

typedef unsigned char BYTE;

typedef unsigned int WORD;

typedef unsigned long DWORD;

sfr AUXR = 0x8e; //Auxiliary register
sfr SPSTAT = O0xcd; //SPI status register
#define SPIF 0x80 //SPSTAT.7

#define WCOL 0x40 //SPSTAT.6

sfr SPCTL = Oxce; //SPI control register
#define SSIG 0x80 //ISPCTL.7

#define SPEN 0x40 //SPCTL.6

#define DORD 0x20 //SPCTL.5

#define MSTR 0x10 //SPCTL.4

#define CPOL 0x08 //SPCTL.3

#define CPHA 0x04 //SPCTL.2

#define SPDHH 0x00 //CPU_CLK/4
#define SPDH 0x01 //ICPU_CLK/16
#define SPDL 0x02 //ICPU_CLK/64
#define SPDLL 0x03 //CPU_CLK/128

sfr SPDAT = Oxcf; //SPI data register
sbit SPISS = P173; //SPI slave select, connect to other MCU's SS(P1.4) pin
sfr 1E2 = OxAF; //interrupt enable rgister 2
#define ESPI 0x02 /TE2.1

STC MCU Limited. website: www.STCMCU.com 343

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
void InitUart();

void InitSPI();

void SendUart(BYTE dat); //send data to PC

BYTE RecvUart(); //receive data from PC

bit MSSEL; //1: master O:slave

T

void main()

{
InitUart(); //initial UART
InitSPI(); //initial SPI
1E2 |= ESPI;
EA=1;
while (1)
{
if (RI)
{
SPCTL = SPEN | MSTR;
MSSEL = 1;
ACC = RecvUart();
SPISS =0;
SPDAT = ACC;
}
}
}

s

void spi_isr() interrupt 9 using 1

{
SPSTAT = SPIF | WCOL;
if (MSSEL)
{
SPCTL = SPEN;
MSSEL = 0;
SPISS =1;
SendUart(SPDAT);
}
else
{
SPDAT = SPDAT;
}
}

T

//set as master

//pull low slave SS
//trigger SPI send

//SPI interrupt routine 9 (004BH)

//clear SPI status

//reset as slave

//push high slave SS
//return received SPI data

//for salve (receive SPI data from master and

send previous SPI data to master)

344 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

void InitUart()

{
SCON = 0x5a; //set UART mode as 8-bit variable baudrate
TMOD = 0x20; //timerl as 8-bit auto reload mode
AUXR = 0x40; //timer1l work at 1T mode
TH1=TL1=BAUD; //115200 bps
TR1=1;

h

T

void InitSPI()

{
SPDAT = 0; //initial SPI data
SPSTAT = SPIF | WCOL; //clear SPI status
SPCTL = SPEN; //slave mode

h

T

void SendUart(BYTE dat)

{
while (!TI); //wait pre-data sent
TI=0; /lclear TI flag
SBUF = dat; //send current data

}

T T

BYTE RecvUart()

{
while ('RI); //wait receive complete
RI=0; //clear RI flag
return SBUF; //return receive data

}

STC MCU Limited. website: www.STCMCU.com 345

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
2. Assembly code listing:
/* */
/* --- STC MCU International Limited */
/* --- STC12C5Axx Series MCU SPI Demo(Each other as the master-slave) --*/
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/% --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the -------------- */
/* article, please specify in which data and procedures from STC = -------------- */
* ¥
AUXR DATA O08EH ;Auxiliary register
SPSTAT DATA 0CDH ;SPI status register
SPIF EQU 080H ;SPSTAT.7
WCOL EQU 040H ;SPSTAT.6
SPCTL DATA O0CEH ;SPI control register
SSIG EQU 080H ;SPCTL.7
SPEN EQU 040H ;SPCTL.6
DORD EQU 020H ;SPCTL.5
MSTR EQU 010H ;SPCTL.4
CPOL EQU 008H ;SPCTL.3
CPHA EQU 004H ;SPCTL.2
SPDHH EQU 000H ;CPU_CLK/4
SPDH EQU 001H ;CPU_CLK/16
SPDL EQU 002H ;CPU_CLK/64
SPDLL EQU 003H ;CPU_CLK/128
SPDAT DATA O0CFH ;SPI data register
SPISS BIT P1.3 ;SPI slave select, connect to other MCU's SS(P1.4) pin
1E2 EQU 0AFH ;interrupt enable rgister 2
ESPI EQU 02H ;IE2.1
MSSEL BIT 20H.0 ;1: master O:slave
ST T

ORG 0000H

LIMP RESET

ORG 004BH ;SPI interrupt routine
SPI_ISR:

PUSH ACC

PUSH PSW

MOV SPSTAT, #SPIF | WCOL ;clear SPI status

JBC MSSEL, MASTER_SEND

STC MCU Limited. website:
346

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
SLAVE_RECV:
//for salve (receive SPI data from master and
MOV SPDAT, SPDAT ; send previous SPI data to master)
JMP SPI_EXIT
MASTER _SEND:
SETB SPISS ;push high slave SS
MOV SPCTL, #SPEN ; ;reset as slave
MOV A, SPDAT ;return received SPI data
LCALL SEND UART
SPI_EXIT:
POP PSW
POP ACC
RETI
ST
ORG 0100H
RESET:
MOV SP#3FH

LCALL INIT UART
LCALL INIT SPI

;initial UART
;initial SPI

ORL IE2 #ESPI
SETB EA
MAIN:
INB RI, $;wait UART data
MOV SPCTL, #SPEN |MSTR ; ;set as master
SETB MSSEL
LCALL RECV_UART ;receive UART data from PC
CLR SPISS ;pull low slave SS
MOV SPDATA strigger SPI send
SIMP MAIN
ST
INIT _UART:
MOV SCON, #5AH ;set UART mode as 8-bit variable baudrate
MOV TMOD, #20H ;timerl as 8-bit auto reload mode
MOV AUXR #40H stimer]l work at 1T mode
MOV TLI, #0FBH ;115200 bps(256 - 18432000 / 32 / 115200)
MOV THI, #0FBH
SETB TRI1
RET
STC MCU Limited. website: www.STCMCU.com 347

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

ST T

INIT SPI:
MOV SPDAT, #0
MOV SPSTAT, #SPIF | WCOL
MOV SPCTL, #SPEN
RET

ST T

SEND UART:
JNB TI, $
CLR TI
MOV SBUF, A
RET

ST

RECV_UART:
JNB R, $
CLR RI
MOV A, SBUF
RET
RET

ST T

END

;initial SPI data
;clear SPI status
;slave mode

;wait pre-data sent
;clear TI flag
;send current data

;wait receive complete
;clear RI flag
;return receive data

348 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

11.5.2 SPI Function Demo Programs using Polling

1. C code listing:

/*

*/

/* --- STC MCU International Limited

*/

/* --- STC12C5Axx Series MCU SPI Demo(Each other as the master-slave) --*/

/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* - Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the -------------- */
/* article, please specify in which data and procedures from STC =~ -------------- */
/* */
#include "reg51.h"

#define FOSC 18432000L

#define BAUD (256 - FOSC /32 / 115200)

typedef unsigned char BYTE;

typedef unsigned int WORD;

typedef unsigned long DWORD;

sfr AUXR = 0x8e; //Auxiliary register
sfr SPSTAT = 0Oxcd; //SPI status register
#define SPIF 0x80 //SPSTAT.7

#define WCOL 0x40 //SPSTAT.6

sfr SPCTL = Oxce; //SPI control register
#define SSIG 0x80 //SPCTL.7

#define SPEN 0x40 //SPCTL.6

#define DORD 0x20 //SPCTL.5

#define MSTR 0x10 //SPCTL.4

#define CPOL 0x08 //SPCTL.3

#define CPHA 0x04 //SPCTL.2

#define SPDHH 0x00 //CPU_CLK/4
#define SPDH 0x01 //CPU_CLK/16
#define SPDL 0x02 //CPU_CLK/64
#define SPDLL 0x03 //CPU_CLK/128

sfr SPDAT = 0xcf; //SPI data register

sbit SPISS = P173; //SPI slave select, connect to slave' SS(P1.4) pin
void InitUart();

void InitSPI();

void SendUart(BYTE dat); //send data to PC
BYTE RecvUart(); //receive data from PC
BYTE SPISwap(BYTE dat); //swap SPI data between master
STC MCU Limited. website: www.STCMCU.com 349

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
T

void main()

{
InitUart(); //initial UART
InitSPI(); //initial SPI
while (1)
{
if (RI)
{
SPCTL = SPEN | MSTR; //set as master
SendUart(SPISwap(RecvUart()));
SPCTL = SPEN; //reset as slave
}
if (SPSTAT & SPIF)
{
SPSTAT = SPIF | WCOL; //clear SPI status
SPDAT = SPDAT; //mov data from receive buffer to send buffer
}
}
}

T T

void InitUart()
{
SCON = 0x5a; //set UART mode as 8-bit variable baudrate
TMOD = 0x20; /timer1 as 8-bit auto reload mode
AUXR = 0x40; /timer1l work at 1T mode
THI1 =TL1 = BAUD; //115200 bps
TR1=1;
}

T

void InitSPI()

{
SPDAT = 0; //initial SPI data
SPSTAT = SPIF | WCOL; //clear SPI status
SPCTL = SPEN; //slave mode

}

350 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

s

void SendUart(BYTE dat)

{
while (!TD); //wait pre-data sent
TI=0; //clear TI flag
SBUF = dat; //send current data

H

T

BYTE RecvUart()

{
while (!RI); //wait receive complete
RI=0; //clear RI flag
return SBUF; //return receive data

H

T

BYTE SPISwap(BYTE dat)

{
SPISS =0; //pull low slave SS
SPDAT = dat; /ltrigger SPI send
while (!(SPSTAT & SPIF)); /Iwait send complete
SPSTAT = SPIF | WCOL; /lclear SPI status
SPISS =1; /Ipush high slave SS
return SPDAT; //return received SPI data
H
STC MCU Limited. website: www.STCMCU.com 351

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

2. Assemly code listing:

/* */
/* --- STC MCU International Limited */
/* --- STC12C5Axx Series MCU SPI Demo(Each other as the master-slave) --*/
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the -------------- */
/* article, please specify in which data and procedures from STC =~ -------------- */
/* */
AUXR DATA 08EH ;Auxiliary register
SPSTAT DATA O0CDH ;SPI status register
SPIF EQU 080H ;SPSTAT.7
WCOL EQU 040H ;SPSTAT.6
SPCTL DATA O0CEH ;SPI control register
SSIG EQU 080H ;SPCTL.7
SPEN EQU 040H ;SPCTL.6
DORD EQU 020H ;SPCTL.5
MSTR EQU 010H ;SPCTL.4
CPOL EQU 008H ;SPCTL.3
CPHA EQU 004H ;SPCTL.2
SPDHH EQU 000H ;CPU_CLK/4
SPDH EQU 001H ;CPU_CLK/16
SPDL EQU 002H ;CPU_CLK/64
SPDLL EQU 003H ;CPU_CLK/128
SPDAT DATA O0CFH ;SPI data register
SPISS BIT P1.3 ;SPI slave select, connect to slave' SS(P1.4) pin
ST

ORG 0000H

LIMP RESET

ORG 0100H
RESET:

LCALL INIT UART ;initial UART

LCALL INIT SPI ;initial SPI
MAIN:

JB RI, MASTER MODE

352 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

SLAVE MODE:
MOV A, SPSTAT
INB ACC.7, MAIN
MOV SPSTAT, #SPIF | WCOL ;clear SPI status
MOV SPDAT, SPDAT ;return received SPI data
SIMP MAIN
MASTER MODE:
MOV SPCTL, #SPEN |MSTR ;set as master
LCALL RECV_UART ;receive UART data from PC
LCALL SPI_ SWAP ;send it to slave, in the meantime, receive SPI data from slave
LCALL SEND UART ;send SPI data to PC
MOV SPCTL, #SPEN ; ;reset as slave
SIMP MAIN
ST
INIT UART:
MOV SCON, #5AH ;set UART mode as 8-bit variable baudrate
MOV TMOD, #20H ;timerl as 8-bit auto reload mode
MOV AUXR, #40H stimer]l work at 1T mode
MOV TLI1, #0FBH ;115200 bps(256 - 18432000 / 32 / 115200)
MOV THI, #0FBH
SETB TRI1
RET
ST
INIT SPI:
MOV SPDAT, #0 ;initial SPI data
MOV SPSTAT, #SPIF | WCOL ;clear SPI status
MOV SPCTL, #SPEN ;slave mode
RET
ST
SEND UART:
INB TI, $;wait pre-data sent
CLR TI ;clear TI flag
MOV SBUF, A ;send current data
RET

STC MCU Limited. website: www.STCMCU.com 353

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

ST

RECV_UART:

INB
CLR
MOV
RET
RET

RI, $
RI
A, SBUF

ST

SPI_SWAP:

WAIT:

CLR
MOV

MOV
INB
MOV
SETB
MOV
RET

SPISS
SPDAT, A

A, SPSTAT
ACC.7, WAIT
SPSTAT, #SPIF | WCOL
SPISS

A, SPDAT

ST T

END

;wait receive complete
;clear RI flag
;return receive data

;pull low slave SS
strigger SPI send

;wait send complete
;clear SPI status

;push high slave SS
;return received SPI data

354

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

11.6 SPI Demo (Single Master Multiple Slave)

1. Assemly code listing

¥ */
;/*¥ --- STC MCU International Limited */
/¥ -—- STC 1T Series MCU SPI ASM Demo */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */
J */
;1. The demo program is suitable for single master multiple slave system
;2. Hardware connection:

Master Slave #1
5 MISO |« MISO
5 MOSI »IMOSI
; SCLK > scLK
5 P1.2 1SS
5 P1.3
? Slave #2
> <3 MISO
f »1 MOSI
; >SCLK
’ >SS

;3. SPI communication :

8-bit Master MCU SPI register and 8-bit Slave MCU SPI register combined into a 16-bit cyclic shift register.
When Master MCU is written a byte data to SPI data register (SPDAT), the data transmission is triggered
immediately. With the SCLK’s clock signal, 8-bit data in Master MCU’s SPDAT register shift into Slave MCU”
s SPDAT through MOSI pin, in the meanwhile, the 8-bit data in Slave MCU’s SPDAT register is shifted into

Master MCU’s SPDAT register through MISO pin.
;4. Modification method :
a) Set “MASTER SLAVE EQU 07, then the object file is Master MCU file.

b) Set “MASTER SLAVE EQU 17, then the object file is Slave #1 MCU file.
¢) Set “MASTER SLAVE EQU 27, then the object file is Slave #2 MCU file.
d) Power-on the whole system (Master MCU, Slave #1 MCU and Slave #2 MCU)

e) P1.2 and P1.3 respectively control Slave #1 and Slave #2, but still a moment, only one Slave MCU is

selected.
f) Using serial debugging assistant debug.
;5. Using inquiry mothed to receive SPI data
;6. Work environment: Fosc=18.432MHz and 9600 baudrat

STC MCU Limited. website: www.STCMCU.com

355

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

;Define const

MASTER _SLAVE EQU
;MASTER SLAVEEQU
;MASTER SLAVEEQU

;RELOAD 8BIT DATA
RELOAD 8BIT DATA
;RELOAD 8BIT DATA
;RELOAD 8BIT DATA

;Define SFR

AUXR EQU 8EH
SPCTL EQu 85H
SPSTAT EQU 84H
SPDAT EQU 86H
EADC_SPI EQU

;Define SPI function pin

Ju—

EQU
EQU
EQU
EQU

;Master MCU

;Slave #1 MCU

;Slave #2 MCU

OFFH ;56700@22.1184MHz
OFBH ;9600@18.432MHz
0F6H ;4800@18.432MHz
OFFH ;28800@11.0592MHz

; Auxiliary register
;SPI control register
;SPI status register
;SPI data register

IE.5

;SPI interrupt enable bit

SCLK EQU P1.7 ;SPI clock pin
MISO EQU P1.6 ;SPI master input/slave output pin
MOSI EQU P1.5 ;SPI master output/slave input pin
SS EQU P1.4 ;SPI slave select pin
Slavel SS EQU P1.2 ;slave #1 MCU select pin
Slave2 SS EQU PL.3 ;slave #2 MCU select pin
LED MCU_START EQU P3.4 ;MCU work LED
;Define user variable
Flags EQU 20H ;user flag
SPI Receive EQU Falgs.0 ;SPIreceive flag
TO_10mS_count EQU 30H ;10ms counter
SPI buffer EQU 31H ;SPI revecie buffer
ORG 0000H
LIMP MAIN
ORG 000BH
LIMP timer0 Routine ;timer0 interrupt routine
ORG 002BH
LIMP ADC_SPI_Interrupt_Routine ;SPI interrupt routine
ORG 0080H
MAIN:
CLR LED MCU_START ;work led on
MOV SP#7FH ;initial SP
ACALL Initial_System ;system initial
if MASTER _SLAVE ==
CLR Slavel SS ;select slave #1 MCU
356 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

Check RS232:
INB RI,Master_Check SPI ;check UART receive
ACALL Get Byte From RS232 ;load UART data to ACC
; ACALL RS232 Send Byte ;send data in ACC to PC
; SIMP Check RS232
ACALL SPI Send Byte ;send datain ACC to SPI slave
SIMP Check RS232
Master_Check SPI:
INB SPI Receive,Check RS232 ;check SPI receive
MOV A,SPI buffer ;load SPI data to ACC
CLR SPI Recevie ;clear SPI receive flag
ACALL SPI Send Byte ;send datain ACC to SPI slave
SIMP Check RS232

else

Slave Check SPI:
INB SPI Receive,Slave Check SPI ;check SPI receive
MOV A,SPI buffer ;load SPI data to ACC
CLR SPI Receive ;clear SPI receive flag

if MASTER_SLAVE ==
ADD A#l ;value +1 on slave #2 MCU
endif
MOV SPDAT,A ;save data into SPDAT
SIMP Slave Check SPI
endif

if MASTER SLAVE =0
timer0_Routine:

PUSH PSW
PUSH ACC
MOV THO,#0C4H ;reload timer0 10ms value

INC TO 10mS count ;10ms counter

MOV A#200 ;count 200 times

CLR C

SUBB A,TO 10mS count

INC timer0_Exit

CPL SLAVEL SS ;switch slave

CPL SLAVE2 SS

MOV TO 10mS_count,#0;reset counter
timer0_Exit:

POP ACC
POP PSW
RETI
else
timer0_Routine:
RETI
endif
STC MCU Limited. website: www.STCMCU.com 357

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

ADC SPI Interrupt Routine:
MOV SPDAT,#0COH ;clear SPIF and WCOL flag

MOV A,SPDAT ;save SPI received data
MOV SPI buffer,A

SETB SPI Receive ;set SPI receive flag
RETI

Initial System:
ACALL Initial Uart ;initial UART sfr
ACALL Initial SPI ;initial SPI sfr
SETB TRO ;start timerQ
SETB ETO ;enable timer(interrupt
MOV Flags,#0 ;initial flag
SETB EA ;enable global interrupt flag
RET

Initial Uart:

MOV SCON,#50H ;set UART as 8-bit variable mode
MOV TMOD.,#21H ;set timer mode

MOV THI1#RELOAD 8BIT DATA ;set UART baudrate
MOV TL1#RELOAD 8BIT DATA

MOV PCON.,#80H ;baudrate * 2

ORL AUXR #40H ;1T mode

SETB TRI1 stimer] start

RET

Initial SPI:
if MASTER_SLAVE ==

MOV SPCTL,#11111100B ;master mode
else

MOV SPCTL,#01101100B ;slave mode
endif

MOV SPSTAT,#11000000B ;clear SPI flag

ORL AUXR,#08H ;AUXR.3(ESPI) =1

SETB EADC SPI ;enable SPI interrupt

RET

RS232 Send Byte:
CLR TI ;ready send
MOV SBUF,A ;write data to TX buffer
INB TLS$;wait send completed
CLR TI ;clear TI flag
RET

SPI Send Byte:
CLR EADC _SPI ;disable SPI interrupt
MOV SPDAT,A ;write data to SPI data register

STC MCU Limited. website:
358

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412

Fax:86-755-82905966

SPI Send Byte Wait:
MOV A,SPSTAT ;check SPI status
ANL A #80H

JZ SPI Send Byte Wait ;wait SPI send complete
SETB EADC_SPI ;enable SPI interrupt
RET

Get_Byte From RS232:
MOV A,SBUF ;load datato ACC
CLR RI ;clear UART receive flag
RET

END

2. C listing code:
/*

*/

/* --- STC MCU International Limited

*/

/¥ --- STC 1T Series MCU SPI ASM Demo
/* --- Mobile: (86)13922809991

*/
*/

*/

/* --- Fax: 86-755-82905966
/* --- Tel: 86-755-82948412

*/

/* --- Web: www.STCMCU.com

*/

/* If you want to use the program or the program referenced in the
/* article, please specify in which data and procedures from STC

*/
*/
*/

/*
typedef unsigned char INT8U;
typedef unsigned int INT16U;
typedef unsigned long INT32U;

#include “new_8051.h”

//Define const

#define SPI_INTERRUPT_VECTOR 9

#define TRUE 1

#define FALSE 0

#define MASTER

#define CONFIG_ MASTER 0xd0 //master mode
#define CONFIG_SLAVE 0xc0 //slave mode
#define SPIF._WCOL_MASK 0xcO //SPIF & WCOL mask bit
#define FOSC 1843200

#define BAUD 9600

#define BUF SIZE 0x20

STC MCU Limited. website:

www.STCMCU.com

359

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

//Define SFR

sfr SPCTL = Oxce;

sbit LED_MCU_START = P3"4; //work LED
bit SPI Receive; //SPI received flag

bit SPI_status; //SPI status

INTS8U SPI_buffer; //SPI receive data buffer
INT8U RS232 point;

INTS8U ISP_point;

INTSU buffer[BUF_SIZE];

/]

void Initial_SPI();

void Init_System();

INT8U Get_Byte From RS232();
void RS232 Send Byte(INT8U ch);
void SPI_Send Byte(INT8U);

void send_buffer to PC();

void clear_buffer();

void delay(INT16U d);

void SPI read from_slave(INT8U n);

/]

void main()

{
INT32U i=0;
LED MCU_START =0; /lwork LED on
Init_System(); //system initial
SPI Recevie =0; //initial user flag
RS232 point = 0;
ISP _point =0;
clear buffer(); //lempty buffer
#ifdet MASTER
while (1)
{
if (RI) /Icheck UART RI
{
RI=0;
if (RS232_point < BUF_SIZE)
buffer[RS232 point++] = SBUF //save UART RX data
1=65000; //wait another data
}
if 1>0)
{
i--; //check wait
if(i==0) //send all data at wait end
{
if (RS232_point > 0)
{
ISP _point =0;
360 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
SPI status = 1; //1:SPI send
SPDAT = buffer[ISP_point++]; //trigger SPI send action
while (ISP_point < RS232 point); //other send in interrupt
}
delay(300);
SPI read from slave(RS232 point); //read slave data
send buffer to PC(); //send back to PC
clear buffer();
SPI Receive = 0;
RS232 point = 0;
ISP_point = 0;
RI=0;
}
}
}
felse
SPI Receive =0;
SPI status = 0; //0:SPI receive
RS232 point = 0;
ISP_point = 0;
while (1)
{
if (SPI_Recevie)
{
SPI Receive = 0;
i=10000; //wait another data
}
if 1>0)
{ .
i3
if i==0)
{
if (ISPI_status) //SPI receive
{
RS232 point = ISP_point;
ISP_point = 0;
send buffer to PC(); //send buffer data to PC
}
ISP_point = 0;
SPI status = 1; //1:SPI send

SPI Recevie = 0;
while (!SPI_Receive);
delay(50);

clear buffer();
RS232 point = 0;
ISP_point = 0;
SPI status = 0;
SPI Recevie = 0;

//set timeout

//0:SPI receive

//wait send the 1% data

STC MCU Limited.

website: www.STCMCU.com

361

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
}
}
#endif
}

/]

void SPI_Interrupt Routine() interrupt SPI_ INTERRUPT VECTOR

{
SPI buffer = SPDAT;

SPSTAT = SPIF_WCOL_MASK;
SPI Receive = 1;
if (SPI_status)

if (ISP_point < RS232 point)

{

//save SPI data
//clear SPI flag

//set SPI received flag

//1:SPI send

SPDAT = bufter[ISP_point];

//0:SPI receive

buffer[ISP_point] = SPI buftfer;

ISP_point++;
H
H
else
if (ISP_point < BUF_SIZE)
ISP point++;
H
H

H
I

void Initial RS232()
{

ES=0;
SCON = 0x50; //UART mode(8-bit variable)
TMOD &= 0x0f; /timer0 mode(8-bit auto-reload)
TMOD |= 0x20;
TH1 =TLI1 =256 — FOSC/384/BAUD; /UART baudrate
TR1=1
AUXR |= 0x40; /1T mode
b
/]
void Initial_SPI()
{
#ifdet MASTER
SPCTL = CONFIG_MASTER; //master mode
felse
SPCTL = CONFIG_SLAVE; //slave mode
#endif
SPSTAT = SPIF. WCOL_MASK; //clear SPI flag
1E2 |= 0x02; //enable SPI interrupt
H
362 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

/]
void Init System()
{
Initial RS232(); //initial UART
Initial SPI(); //initial SPI
EA=1;
}
/]
void RS232 Send Byte(INT8U ch)
{
TI=0; //ready send
SBUF = ch; //write UART data
while (TI = 0); //wait data sent
TI=0; /Iclear TX flag
}
/]
void send_buffer to PC() //send all data in buffer to PC
{
INTSU i;
if (RS232 point == 0) return;
RS232 Send Byte(RS232 point);
if (i=0; i<RS232 point; i++)
{
RS232 Send Byte(buffer[i]);
}
§
/]
void clear_buffer() /lempty data buffer
{
INTSU i;
for (i=0; i<BUF_SIZE; i++)
{
buffer[i] 0
}
}
/]
void delay(INT16U d)
{
INT16U i;
while (d--)
{
i=1000;
while (i--);
}
}
STC MCU Limited. website: www.STCMCU.com 363

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

/]

#ifdef MASRER
void SPI_read from_slave(INT8U n)

{

}
#endif

INTSU j;

clear_buffer()

SPI status = 0;

ISP_point = 0;

SPI Receive = 0;

SPDAT = 0x00;

while (!SPI_Receive);

SPI Recevie = 0;

ISP_point = 0;

for (j=0; j<n; j++)

{
SPDAT = 0x00;
while (!SPI_Receive);
SPI Receive = 0;

//receive slave data

//0:SPI receive

/Itrigger SPI clock

//discard the 1* data

//trigger SPI clock

364

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Chapter 12. IAP/ EEPROM

The ISP in STC12C5A60S2 series makes it possible to update the user’s application program and non-volatile
application data (in IAP-memory) without removing the MCU chip from the actual end product. This useful
capability makes a wide range of field-update applications possible. (Note ISP needs the loader program pre-
programmed in the ISP-memory.) In general, the user needn’t know how ISP operates because STC has provided
the standard ISP tool and embedded ISP code in STC shipped samples.But, to develop a good program for ISP
function, the user has to understand the architecture of the embedded flash.

The embedded flash consists of 16 pages. Each page contains 512 bytes. Dealing with flash, the user must erase it
in page unit before writing (programming) data into it.Erasing flash means setting the content of that flash as FFh.
Two erase modes are available in this chip. One is mass mode and the other is page mode. The mass mode gets
more performance, but it erases the entire flash. The page mode is something performance less, but it is flexible
since it erases flash in page unit. Unlike RAM’s real-time operation, to erase flash or to write (program) flash
often takes long time so to wait finish.

Furthermore, it is a quite complex timing procedure to erase/program flash. Fortunately, the STC12C5A60S2
series carried with convenient mechanism to help the user read/change the flash content. Just filling the target
address and data into several SFR, and triggering the built-in ISP automation, the user can easily erase, read, and
program the embedded flash.

The In-Application Program feature is designed for user to Read/Write nonvolatile data flash. It may bring great
help to store parameters those should be independent of power-up and power-done action. In other words, the user
can store data in data flash memory, and after he shutting down the MCU and rebooting the MCU, he can get the
original value, which he had stored in.

The user can program the data flash according to the same way as ISP program, so he should get deeper under-
standing related to SFR IAP_DATA, IAP_ADDRL, IAP_ ADDRH, IAP_CMD, IAP_TRIG, and IAP_CONTR.

STC MCU Limited. website: www.STCMCU.com 365

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

12.1 TAP/ EEPROM Special Function Registers

The following special function registers are related to the IAP/ISP/EEPROM operation. All these
registers can be accessed by software in the user’s application program.

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
IAP DATA | [SP/IAP Flash Data |y 1111 1111B
- Register
ISP/IAP Flash
IAP_ADDRH Address High C3H 0000 0000B
1aP ADDRL| [SP/IAP Flash C4H 0000 0000B
Address Low
1ap cmp | ISPAAPFlash g f C T - 1 - L - 1 - [- [Msifmso] o00s
- Command Register
IAP TRIG | [SPAAPFlash -y XXXX XXXXB
- Command Trigger
JAP_CONTR ISP/IAP.Control CTH IAPEN| SWBS [SWRST[CMD FAIL| - JwT2] wT1 | wT0 0000 x000B
Register
PCON Power Control 87H [sMoD | smopo | LvDF | POF | GF1 | GFo | PD | IDL [0011 0000B

1. ISP/IAP Flash Data Register : IAP_DATA (Address: C2H, Non bit-addressable)

IAP_DATA is the data port register for ISP/IAP operation. The data in IAP_DATA will be written into
the desired address in operating ISP/IAP write and it is the data window of readout in operating ISP/
IAP read.

2. ISP/IAP Flash Address Registers : IAP_ADDRH and IAP_ADDRL

IAP_ADDRH is the high-byte address port for all ISP/IAP modes.

IAP_ADDRH][7:5] must be cleared to 000, if one bit of IAP_ ADDRH][7:5] is set, the IAP/ISP write
function must fail.

IAP_ADDRL is the low port for all ISP/IAP modes. In page erase operation, it is ignored.

366 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

3. ISP/IAP Flash Command Register : IAP_CMD (Non bit -addressable)

SFR name Address | bit B7 B6 B5 B4 B3 B2 Bl BO
[AP_ CMD C5H | name - - - - - - MS1 MSO0

B7~B2: Reserved.

MS1, MSO0 : ISP/IAP operating mode selection. IAP_CMD is used to select the flash mode for
performing numerous ISP/IAP function or used to access protected SFRs.

0, 0 : Standby

0, 1 : Data Flash/EEPROM read.

1,0:

I, 1:

Data Flash/EEPROM program.
Data Flash/EEPROM page erase.

>

>

4. ISP/IAP Flash Command Trigger Register : IAP_TRIG (Address: C6H, Non bit -addressable)

IAP_TRIG is the command port for triggering ISP/IAP activity and protected SFRs access. If IAP_TRIG is filled
with sequential 0x5Ah, 0xA5h and if IAPEN(JAP_CONTR.7) = 1, ISP/IAP activity or protected SFRs access will
triggered.

5. ISP/IAP Control Register : IAP_CONTR (Non bit-addressable)

SFR name Address | bit B7 B6 B5 B4 B3 B2 Bl BO
IAP_CONTR C7H |name |IAPEN | SWBS | SWRST | CMD_FAIL | - WT2 WT2 WTO

IAPEN : ISP/IAP operation enable.

0 : Global disable all ISP/IAP program/erase/read function.

1 : Enable ISP/IAP program/erase/read function.
SWBS: software boot selection control.

0 : Boot from main-memory after reset.

1 : Boot from ISP memory after reset.
SWRST: software reset trigger control.

0 : No operation

1 : Generate software system reset. It will be cleared by hardware automatically.
CMD_FAIL: Command Fail indication for ISP/IAP operation.

0 : The last ISP/IAP command has finished successfully.

1: The last ISP/IAP command fails. It could be caused since the access of flash memory was inhibited.
B3: Reserved. Software must write “0” on this bit when IAP_CONTR is written.

STC MCU Limited. website: www.STCMCU.com 367

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

WT2~WTO : Waiting time selection while flash is busy.

Setting wait times CPU wait times
Read Program Sector Erase Recommended System
WT2 | WTT| WTO | (2 System (=5§uS) (=21mS) | Clock Frequency {MHZ)
clocks)

1 1 1 |2 SYSclks 55 SYSclks 21012 SYSclks <1MHz

1 1 0 |[2SYSclks| 110SYSclks | 42024 SYSclks < 2MHz

1 0 1 [2SYSclks| 165SYSclks | 63036 SYSclks < 3MHz

1 0 0 |[2SYSclks| 330SYSclks |126072 SYSclks < 6MHz

0 1 1 |2SYSclks| 660 SYSclks |252144 SYSclks < 12MHz

0 1 0 |[2SYSclks| 1100 SYSclks |420240 SYSclks < 20MHz

0 0 1 |[2SYSclks| 1320 SYSclks |504288 SYSclks < 24MHz

0 0 0 |[2SYSclks| 1760 SYSclks |672384 SYSclks < 30MHz

Note: Software reset actions could reset other SFR,but it never influences bits IAPEN and SWBS.The IAPEN and
SWBS. The IAPEN and SWBS only will be reset by power-up action, while not software reset.

6. When the operation voltage is too low, EEPROM / IAP function should be disabled

SFR name Address | bit B7 B6 B5 B4 B3 B2 Bl BO
PCON 87H name | SMOD | SMODO | LVDF | POF | GF1| GFO | PD IDL

LVDF : Pin Low-Voltage Flag. Once low voltage condition is detected (VCC power is lower than LVD
voltage), it is set by hardware (and should be cleared by software).

If power inputing source is 220V AC, then the reference application circuit as bellow:

470uF
o—T| 7805 IqTOu e Vee

k=
I T T T Jo Ri

Gn

P4.6/LVD

MCU

Note : 7805 output 8.5V voltage and use R1 and R2 can achieve the low voltage detect function at low threshold
voltage. Program can use query mode or interrupt mode to check LVDF flag. The detailed implementation
is clear LVDF at first and then read LVDF again, if LVDF is still 1, then maybe low voltage, you should
save data immediately. After saved completed, check LVDF continue. If LVDF is 1 then wait for voltage
restoration, else if LVDF is 0, then you can go other function code.

368 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

12.2 STC12C5A6082 series Internal EEPROM Allocation Table

STC12C5A6082 series microcontroller's Data Flash (internal available EEPROM) address (and program space
is separate) : if the application area of IAP write Data/erase sector of the action, the statements will be ignore
and continue to the next one. Program in user application area (AP area), only operate IAP/ISP on Data Flash
(EEPROM)

TIAP12C5A60S2 / AD/PWM and IAP12LESA60S2 / AD/PWM are excepted, this several types in the application
area can modify the application

STC12C5A60S2/AD/PWM series MCU internal EEPROM Selection Table
Type EEPROM Sector Begin_Sector End_Sector

(Byte) Numbers Begin_Address End_Address
STC12C5A08S2/AD/PWM 8K 16 0000H IFFFH
STC12C5A16S2/AD/PWM 8K 16 0000H 1FFFH
STC12C5A20S2/AD/PWM 8K 16 0000H 1FFFH
STC12C5A32S2/AD/PWM 28K 56 0000H 6FFFH
STC12C5A40S2/AD/PWM 20K 40 0000H 4FFFH
STC12C5A48S2/AD/PWM 12K 24 0000H 2FFFH
STC12C5A52S2/AD/PWM 8K 16 0000H 1FFFH
STC12C5A56S2/AD/PWM 4K 8 0000H OFFFH
STC12C5A60S2/AD/PWM 1K 2 0000H 03FFH

STC12LESA60S2/AD/PWM series MCU internal EEPROM Selection Table
Type EEPROM Sector Begin_Sector End_Sector

(Byte) Numbers Begin_Address End_Address
STCI12LE5A08S2/AD/PWM 8K 16 0000H IFFFH
STCI2LE5A16S2/AD/PWM 8K 16 0000H 1IFFFH
STC12LE5A20S2/AD/PWM 8K 16 0000H IFFFH
STC12LE5A32S2/AD/PWM 28K 56 0000H 6FFFH
STC12LE5A40S2/AD/PWM 20K 40 0000H 4FFFH
STC12LE5A48S2/AD/PWM 12K 24 0000H 2FFFH
STCI12LE5A52S2/AD/PWM 8K 16 0000H 1FFFH
STCI12LE5A56S2/AD/PWM 4K 8 0000H OFFFH
STCI2LE5A60S2/AD/PWM 1K 2 0000H 03FFH

The following series are special.

User can modify the application the application area, all flash area can be modified as EEPROM
IAP12C5A62S52/AD/PWM - 124 0000h F7FFh
IAPI12LE5A62S2/AD/PWM - 124 0000h F7FFh

STC MCU Limited. website: www.STCMCU.com 369

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
STC12C5A32S2/AD/PWM address reference table in detail (512 bytes per sector)
STC12LE5A32S2/AD/PWM address reference table in detail (512 bytes per sector)
Sector 1 Sector 2 Sector 3 Sector 4
Start End Start End Start End Start End
0000H 01FFH 0200H 03FFH 0400H 05FFH 0600H 07FFH
Sector 5 Sector 6 Sector? Sector 8
Start End Start End Start End Start End
0800H 09FFH | 0AOOH | OBFFH 0CO0OH 0DFFH 0EOOH OFFFH
Sector 9 Sector 10 Sector 11 Sector 12
Start End Start End Start End Start End
1000H 11FFH 1200H 13FFH 1400H 15FFH 1600H 17FFH
Sector 13 Sector 14 Sector 15 Sector 16
Start End Start End Start End Start End
1800H 19FFH 1A00H | 1BFFH | 1CO000H | IDFFH 1E00H 1FFFH
Sector 17 Sector 18 Sector 19 Sector 20 Fach 512
Start End Start End Start End Start End ach sector
2000H 21FFH 2200H 23FFH 2400H 25FFH 2600H 27FFH byte
Sector 21 Sector 22 Sector 23 Sector 24
Start End Start End Start End Start End
2800H 29FFH | 2A00H | 2BFFH 2C00H 2DFFH 2E00H 2FFFH
Sector 25 Sector 26 Sector 27 Sector 28
Start End Start End Start End Start End
30000 | 3IFFI | 32000 | 33FFI | 3400H | 3SFFH | 36000 | 37FFH | 8¢St thz s
Sector 29 Sector 30 Sector 31 Sector 32 umes moditie
Start End Start End Start End Start End__[data in the same
3800H 39FFH | 3A00H | 3BFFH | 3C000H | 3DFFH 3E00H 3FFFH_[sector, each times
Sector 33 Sector 34 Sector 35 Sector 36 modified data in|
Start End Start End Start End Start End |different sectors,|
4000H 41FFH 4200H 43FFH 4400H 45FFH 4600H 47FFH_|don't have to use
Sector 37 Sector 38 Sector 39 Sector 40 full. of course. it
Start End Start End Start End Start End | as’all to use ’
4800H 49FFH | 4A00H | 4BFFH 4CO0H 4DFFH 4E00H 4FFFH
Sector 41 Sector 42 Sector 43 Sector 44
Start End Start End Start End Start End
5000H 51FFH 5200H 53FFH 5400H 55FFH 5600H S7FFH
Sector 45 Sector 46 Sector 47 Sector 48
Start End Start End Start End Start End
5800H 59FFH | 5A00H | 5BFFH 5CO0H 5DFFH SE00H 5FFFH
Sector 49 Sector 50 Sector 51 Sector 52
Start End Start End Start End Start End
6000H 61FFH 6200H 63FFH 6400H 65FFH 6600H 67FFH
Sector 53 Sector 54 Sector 55 Sector 56
Start End Start End Start End Start End
6800H 69FFH | 6A00H | 6BFFH 6CO0H 6DFFH 6E00H 6FFFH
370 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

12.3 TAP/EEPROM Assembly Language Program Introduction

; /*It is decided by the assembler/compiler used by users that whether the SFRs addresses are declared by the

DATA or the EQU directive*/
IAP_DATA DATA 0C2H or
IAP_ADDRH DATA O0C3H or
IAP_ADDRL DATA 0C4H or
IAP_CMD DATA O0C5H or
IAP_TRIG DATA 0C6H or
IAP_CONTR DATA O0C7H or

;/¥*Define ISP/IAP/EEPROM command and wait time*/

ISP_IAP_BYTE_READ EQU
ISP_IAP_BYTE_PROGRAM EQU
ISP_IAP_SECTOR_ERASE EQU
WAIT_TIME EQU

;/*Byte-Read*/

MOV IAP_ADDRH, #BYTE _ADDR_HIGH
MOV IAP_ADDRL, #BYTE _ADDR LOW

MOV IAP_CONTR, #WAIT _TIME

IAP DATA EQU
IAP ADDRH EQU
IAP_ADDRL EQU
IAP_CMD EQU
IAP_TRIG EQU
IAP_CONTR EQU

S W N =

;Byte-Read
;Byte-Program
;Sector-Erase
;Set wait time

;Set wait time

0C2H
0C3H
0C4H
0C5H
0C6H
0C7H

;Set ISP/IAP/EEPROM address high
;Set ISP/IAP/EEPROM address low

ORL IAP_CONTR, #10000000B ;Open ISP/IAP function

MOV IAP _CMD, #ISP_IAP BYTE READ ;Set ISP/IAP Byte-Read command
MOV IAP_TRIG, #5AH ;Send trigger command1 (0x5a)
MOV IAP_TRIG, #0ASH ;Send trigger command2 (0xa5)
NOP ;CPU will hold here until ISP/IAP/EEPROM operation complete
MOV A, IAP_DATA ;Read ISP/IAP/EEPROM data

;/*¥Disable ISP/IAP/EEPROM function, make MCU in a safe state*/

MOV IAP_CONTR, #00000000B
MOV IAP_CMD, #00000000B
;MOV IAP_TRIG, #00000000B
;MOV IAP_ADDRH, #OFFH

;MOV IAP_ADDRL, #OFFH

;Close ISP/TAP/EEPROM function

;Clear ISP/IAP/EEPROM command

;Clear trigger register to prevent mistrigger
;Move 00 into address high-byte unit,
;Data ptr point to non-EEPROM area
;Move 00 into address low-byte unit,

;prevent misuse

;/*Byte-Program, if the byte is null(OFFH), it can be programmed; else, MCU must operate Sector-Erase firstly,

and then can operate Byte-Program.*/
MOV IAP DATA, #ONE_DATA

MOV IAP_ADDRH, #BYTE _ADDR_HIGH
MOV IAP_ADDRL, #BYTE _ADDR_LOW

MOV IAP_CONTR, #WAIT _TIME

;Write ISP/IAP/EEPROM data

;Set ISP/IAP/EEPROM address high

;Set ISP/IAP/EEPROM address low

;Set wait time

ORL IAP_CONTR, #10000000B ;Open ISP/IAP function
MOV IAP _CMD, #ISP_IAP BYTE READ ;Set ISP/IAP Byte-Read command
MOV IAP_TRIG, #5AH ;Send trigger command1 (0x5a)
MOV IAP_TRIG, #0ASH ;Send trigger command2 (0xa5)
NOP ;CPU will hold here until ISP/IAP/EEPROM operation complete
STC MCU Limited. website: www.STCMCU.com 371

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

;/*Disable ISP/IAP/EEPROM function, make MCU in a safe state*/

MOV IAP_CONTR, #00000000B
MOV IAP_CMD, #00000000B
;MOV IAP TRIG, #00000000B
;MOV IAP ADDRH, #FFH

;MOV IAP ADDRL, #OFFH

;:Close ISP/TAP/EEPROM function

;Clear ISP/IAP/EEPROM command
;Clear trigger register to prevent mistrigger
;Move 00H into address high-byte unit,
;Data ptr point to non-EEPROM area
;Move 00H into address low-byte unit,
;prevent misuse

;/*Erase one sector area, there is only Sector-Erase instead of Byte-Erase, every sector area account for 512

;Set the sector area starting address high
;Set the sector area starting address low

;Open ISP/IAP function

;Set Sectot-Erase command
;Send trigger command]1 (0x5a)
;Send trigger command2 (0xa5)

bytes*/
MOV IAP_ADDRH, #SECTOT FIRST BYTE ADDR HIGH
MOV IAP_ADDRL, #SECTOT FIRST BYTE ADDR LOW
MOV IAP_CONTR, #WAIT TIME ;Set wait time
ORL IAP_CONTR, #10000000B
MOV IAP_CMD, #ISP_IAP_SECTOR_ERASE
MOV IAP_TRIG, #5SAH
MOV IAP_TRIG, #0ASH
NOP

;/*Disable ISP/IAP/EEPROM function, make MCU in a safe state*/

;CPU will hold here until ISP/IAP/EEPROM operation complete

;Close ISP/TAP/EEPROM function

;Clear ISP/IAP/EEPROM command
;Clear trigger register to prevent mistrigger
;Move 00H into address high-byte unit,

; Data ptr point to non-EEPROM area
;Move 00H into address low-byte unit,
;prevent misuse

MOV IAP_CONTR, #00000000B
MOV IAP_CMD, #00000000B
MOV IAP_TRIG, #00000000B
MOV IAP_ADDRH, #0FFH
MOV IAP_ADDRL, #0FFH

372 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Little common sense: (STC MCU Data Flash use as EEPROM function)

Three basic commands -- bytes read, byte programming, the sector erased

Byte programming: "1" write "1" or "0", will "0" write "0".Just FFH can byte programming. If the byte not FFH,
you must erase the sector , because only the "sectors erased" to put "0" into "1".

Sector erased: only "sector erased" will also be a "0" erased for "1".

Big proposal:

1. The same times modified data in the same sector, not the same times modified data in other sectors, won't have
to read protection.

2. If a sector with only one byte, that's real EEPROM, STC MCU Data Flash faster than external EEPROM, read
a byte/many one byte programming is about 2 clock / 55uS.

3. If in a sector of storing a large amounts of data, a only need to modify one part of a byte, or when the other
byte don't need to modify data must first read on STC MCU, then erased RAM the whole sector, again will need
to keep data and need to amend data in bytes written back to this sector section literally only bytes written orders
(without continuous bytes, write command). Then each sector use bytes are using the less the convenient (not
need read a lot of maintained data).

Frequently asked questions:

1. IAP instructions after finishing, address is automatically "add 1" or "minus 1"?

Answer: not

2. Send 5A and AS after IAP ordered the trigger whether to have sent SA and AS trigger?

Answer: yes

STC MCU Limited. website: www.STCMCU.com 373

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

12.4 EEPROM Demo Program (C and ASM)
1. C Code Listing

/* */
/* --- STC MCU International Limited */
/* --—- STC 1T Series MCU ISP/TAP/EEPROM Demo ----------=----- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"
#include "intrins.h"

typedef unsigned char BYTE;
typedef unsigned int WORD;

/*Declare SFR associated with the IAP */

sfr IAP DATA = 0xC2; //Flash data register

sfr IAP_ ADDRH = 0xC3; //Flash address HIGH

sfr IAP ADDRL = 0xC4; //Flash address LOW

sfr IAP_CMD = 0xCs; //Flash command register
sfr IAP_TRIG = 0xC6; //Flash command trigger
sfr IAP CONTR = 0xC7; //Flash control register

/*Define ISP/IAP/EEPROM command*/

#define CMD_IDLE 0 //Stand-By
#define CMD READ 1 //Byte-Read
#define CMD PROGRAM 2 //Byte-Program
#define CMD_ERASE 3 //Sector-Erase

/*Define ISP/IAP/EEPROM operation const for AP CONTR*/

//#define ENABLE_IAP 0x80 //if SYSCLK<30MHz
//#define ENABLE_IAP 0x81 //if SYSCLK<24MHz
#define ENABLE IAP 0x82 //if SYSCLK<20MHz
//#define ENABLE_IAP 0x83 //if SYSCLK<12MHz
//#define ENABLE_IAP 0x84 //if SYSCLK<6MHz
//#define ENABLE_IAP 0x85 //if SYSCLK<3MHz
//#define ENABLE_IAP 0x86 //if SYSCLK<2MHz
//#define ENABLE_IAP 0x87 //if SYSCLK<1MHz

//Start address for STC12C5A60S2 EEPROM
#define TAP_ADDRESS 0x0000

374 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991

Tel:86-755-82948412 Fax:86-755-82905966

void Delay(BYTE n);
void ITapldle();
BYTE lapReadByte(WORD addr);

void IapProgramByte(WORD addr, BYTE dat);
void IapEraseSector(WORD addr);

void main()

{
WORD i;
P1 = Oxfe; //1111,1110 System Reset OK
Delay(10); //Delay
lapEraseSector(IAP_ ADDRESS); //Erase current sector
for (i=0; i<512; i++) //Check whether all sector data is FF
{
if (JapReadByte(IAP_ADDRESS+i) != 0xff)
goto Error; //1f error, break
h
P1 = Oxfc; //1111,1100 Erase successful
Delay(10); //Delay
for (i=0; i<512; i++) //Program 512 bytes data into data flash
{
IapProgramByte(IAP_ ADDRESS+i, (BYTE)i);
h
P1 = 0xf8; //1111,1000 Program successful
Delay(10); //Delay
for (i=0; i<512; i++) //Verify 512 bytes data
{
if (JapReadByte(IAP_ ADDRESS+i) != (BYTE)i)
goto Error; //If error, break
h
P1 = 0xf0; //1111,0000 Verify successful
while (1);
Error:
Pl &= 0x7f; //0xxx,xxxx IAP operation fail
while (1);
h
/*
Software delay function
*/
STC MCU Limited. website: www.STCMCU.com 375

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
void Delay(BYTE n)
{
WORD x;
while (n--)
{
x=0;
while (++x);
}
}
/*
Disable ISP/IAP/EEPROM function
Make MCU in a safe state
*/
void lapldle()
{
IAP_CONTR =0; //Close IAP function
IAP_ CMD =0; //Clear command to standby
IAP_TRIG=0; //Clear trigger register
IAP_ADDRH = 0x80; //Data ptr point to non-EEPROM area
IAP_ADDRL = 0; //Clear IAP address to prevent misuse
b
/*

Read one byte from ISP/IAP/EEPROM area
Input: addr (ISP/IAP/EEPROM address)
Output:Flash data

*/

BYTE lapReadByte(WORD addr)

{

BYTE dat;

IAP_CONTR = ENABLE IAP;
IAP_CMD = CMD_READ;
IAP_ADDRL = addr;
IAP_ADDRH = addr >> §;
IAP_TRIG = 0x5a;

IAP_TRIG = Oxa5;

nop();

dat=TAP DATA;
Tapldle();

return dat;

//Data buffer

//Open IAP function, and set wait time

//Set ISP/IAP/EEPROM READ command
//Set ISP/IAP/EEPROM address low

//Set ISP/IAP/EEPROM address high

//Send trigger command1 (0x5a)

//Send trigger command?2 (0xa5)

//IMCU will hold here until ISP/IAP/EEPROM
/loperation complete

//Read ISP/IAP/EEPROM data

//Close ISP/IAP/EEPROM function

//Return Flash data

376 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

/*
Program one byte to ISP/IAP/EEPROM area
Input: addr (ISP/IAP/EEPROM address)

dat (ISP/IAP/EEPROM data)
Output:-

*/

void lapProgramByte(WORD addr, BYTE dat)
{
IAP_CONTR = ENABLE IAP;
IAP_CMD =CMD_PROGRAM;
IAP_ADDRL = addr;
IAP_ADDRH = addr >> §;
IAP_DATA = dat;
IAP_TRIG = 0x5a;
IAP_TRIG = Oxa5;
nop();

Tapldle();

/*
Erase one sector area

Input: addr (ISP/IAP/EEPROM address)
Output:-

*/

void lapEraseSector(WORD addr)

{

IAP_CONTR = ENABLE IAP;
IAP_CMD = CMD_ERASE;
IAP_ADDRL = addr;
IAP_ADDRH = addr >> §;
IAP_TRIG = 0x5a;

IAP_TRIG = Oxa5;

//Open IAP function, and set wait time

//Set ISP/IAP/EEPROM PROGRAM command
//Set ISP/IAP/EEPROM address low

//Set ISP/IAP/EEPROM address high

//Write ISP/IAP/EEPROM data

//Send trigger command1 (0x5a)

//Send trigger command?2 (0xa5)

//IMCU will hold here until ISP/IAP/EEPROM
/loperation complete

//Open IAP function, and set wait time
//Set ISP/IAP/EEPROM ERASE command
//Set ISP/IAP/EEPROM address low

//Set ISP/IAP/EEPROM address high
//Send trigger command1 (0x5a)

//Send trigger command?2 (0xa5)

nop(); //IMCU will hold here until ISP/IAP/EEPROM
//operation complete
Tapldle();
§
STC MCU Limited. website: www.STCMCU.com 377

www.STCMCU.com

Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

2. Assembly Code Listing

J */
;/*¥ --- STC MCU International Limited */
;/* --- STC 1T Series MCU ISP/IAP/EEPROM Demo ------=--=-=-=--- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */

;/* article, please specify in which data and procedures from STC */

*/

i

;/*Declare SFRs associated with the IAP */

IAP_DATA
IAP_ADDRH
IAP_ADDRL
IAP_CMD
IAP_TRIG
IAP_CONTR

EQU
EQU
EQU
EQU
EQU
EQU

0C2H
0C3H
0C4H
0C5H
0C6H
0C7H

;Flash data register
;Flash address HIGH
;Flash address LOW
;Flash command register
;Flash command trigger
;Flash control register

;/¥Define ISP/IAP/EEPROM command*/

CMD_IDLE
CMD_READ
CMD _PROGRAM
CMD_ERASE

EQU
EQU
EQU
EQU

0 ;Stand-By

1 ;Byte-Read

2 ;Byte-Program
3 ;Sector-Erase

;/*Define ISP/IAP/EEPROM operation const for [JAP_ CONTR*/

;ENABLE AP
;ENABLE AP
ENABLE IAP
;ENABLE AP
;ENABLE AP
;ENABLE AP
;ENABLE AP
;ENABLE AP

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

80H
81H
82H
83H
84H
85H
86H
87H

;if SYSCLK<30MHz
;if SYSCLK<24MHz
;if SYSCLK<20MHz
;if SYSCLK<12MHz
;if SYSCLK<6MHz
;if SYSCLK<3MHz
;if SYSCLK<2MHz
;if SYSCLK<1MHz

;//Start address for STC12C5A60S2 EEPROM

IAP_ADDRESS EQU 0000H

s

ORG
LIMP

0000H
MAIN

378 STC MCU Limited.

website:

www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

ORG 0100H
MAIN:
MOV PI, #OFEH ;1111,1110 System Reset OK
LCALL DELAY ;Delay
MOV DPTR, #IAP_ADDRESS ;Set ISP/IAP/EEPROM address
LCALL IAP_ERASE ;Erase current sector
MOV DPTR, #IAP_ADDRESS ;Set ISP/IAP/EEPROM address
MOV RO, #0 ;Set counter (512)
MOV R1, #2
CHECKI: ;Check whether all sector data is FF
LCALL TIAP_READ ;Read Flash
CJNE A, #0FFH, ERROR ;If error, break
INC DPTR ;Inc Flash address
DINZ RO, CHECK1 ;Check next
DINZ R1, CHECK1 ;Check next
MOV P1, #0FCH ;1111,1100 Erase successful
LCALL DELAY ;Delay
MOV DPTR, #IAP_ADDRESS ;Set ISP/IAP/EEPROM address
MOV RO, #0 ;Set counter (512)
MOV R1, #2
MOV R2, #0 ;Initial test data
NEXT: ;Program 512 bytes data into data flash
MOV A, R2 ;Ready AP data
LCALL IAP_PROGRAM ;Program flash
INC DPTR ;Inc Flash address
INC R2 ;Modify test data
DINZ RO, NEXT ;Program next
DINZ R1, NEXT ;Program next
MOV P1, #0F8H ;1111,1000 Program successful
LCALL DELAY ;Delay
MOV DPTR, #IAP_ADDRESS ;Set ISP/IAP/EEPROM address
MOV RO, #0 ;Set counter (512)
MOV R1, #2
MOV R2, #0
CHECK2: ;Verify 512 bytes data
LCALL TIAP_READ ;Read Flash
CJNE A, 2, ERROR ;If error, break
INC DPTR ;Inc Flash address
STC MCU Limited. website: www.STCMCU.com 379

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

INC R2
DINZ RO,
DINZ R1,
MOV PI, #OFOH
SIMP $

ERROR:
MOV PO, RO
MOV P2, R1
MOV P3,
CLR P1.7
SIMP $

/¥

;Software delay function

; */

DELAY:
CLR A
MOV RO, A
MOV RI, A
MOV R2, #20H

DELAY1:
DINZ RO, DELAY1
DINZ RI, DELAY1
DINZ R2, DELAY1
RET

S*

;Disable ISP/IAP/EEPROM function

;Make MCU in a safe state

; */

IAP_IDLE:
MOV IAP_CONTR,
MOV IAP CMD,
MOV IAP TRIG,
MOV IAP _ADDRH,
MOV IAP ADDRL,
RET

/*

CHECK2
CHECK2

#0
#0
#0
#80H
#0

;Read one byte from ISP/IAP/EEPROM area
;Input: DPTR(ISP/IAP/EEPROM address)

;Output: ACC (Flash data)
; */
IAP_READ:
MOV IAP _CONTR,
MOV IAP CMD,

#ENABLE_IAP
#CMD_READ

;Modify verify data

;Check next
;Check next

;1111,0000 Verify successful

;0xxx,xxxx IAP operation fail

;Close IAP function

;Clear command to standby

;Clear trigger register

;Data ptr point to non-EEPROM area
;Clear IAP address to prevent misuse

;Open IAP function, and set wait time
;Set ISP/IAP/EEPROM READ command

380

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
MOV IAP ADDRL, DPL ;Set ISP/IAP/EEPROM address low
MOV IAP ADDRH, DPH ;Set ISP/IAP/EEPROM address high
MOV IAP_TRIG, #5AH ;Send trigger command]1 (0x5a)
MOV IAP TRIG, #0ASH ;Send trigger command?2 (0xa5)
NOP ;MCU will hold here until ISP/IAP/EEPROM operation complete
MOV A, IAP_DATA ;Read ISP/IAP/EEPROM data
LCALL IAP IDLE ;Close ISP/IAP/EEPROM function
RET

i

;Program one byte to ISP/IAP/EEPROM area
;Input: DPAT(ISP/IAP/EEPROM address)
;ACC (ISP/IAP/EEPROM data)

;Output:-

IAP_PROGRAM:
MOV
MOV
MOV
MOV
MOV
MOV
MOV
NOP
LCALL
RET

*/
IAP_CONTR, #ENABLE IAP ;Open IAP function, and set wait time
IAP_CMD, #CMD_PROGRAM ;Set ISP/IAP/EEPROM PROGRAM command
IAP_ADDRL, DPL ;Set ISP/IAP/EEPROM address low
IAP_ADDRH, DPH ;Set ISP/IAP/EEPROM address high
IAP_DATA, A ;Write ISP/IAP/EEPROM data
IAP_TRIG, #5AH ;Send trigger command1 (0x5a)
IAP_TRIG, #0ASH ;Send trigger command?2 (0xa5)

;MCU will hold here until ISP/IAP/EEPROM operation complete

IAP IDLE ;Close ISP/IAP/EEPROM function

i*

;Erase one sector area
;Input: DPTR(ISP/TAP/EEPROM address)

;Output:-
; */
IAP_ERASE:
MOV IAP_CONTR, #ENABLE_IAP ;Open IAP function, and set wait time
MOV IAP CMD, #CMD_ERASE ;Set ISP/IAP/EEPROM ERASE command
MOV IAP ADDRL, DPL ;Set ISP/IAP/EEPROM address low
MOV IAP_ADDRH, DPH ;Set ISP/IAP/EEPROM address high
MOV IAP TRIG, #5AH ;Send trigger command]1 (0x5a)
MOV IAP TRIG, #0ASH ;Send trigger command2 (0xa5)
NOP ;MCU will hold here until ISP/IAP/EEPROM operation complete
LCALL IAP_IDLE ;Close ISP/IAP/EEPROM function
RET
END
STC MCU Limited. website: www.STCMCU.com 381

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Chapter 13. STC12 series programming tools usage

13.1 In-System-Programming (ISP) principle

If need download code into STC12C5A60S2 series, P1.0
and P1.1 pin must be connected to GND

If you chose the "Next program code, P1.0/1.1 need=0/0"
option, then the next time you need to re-download the
program, first of all must be connected P1.0 and P1.1 to
GND

Power-on,reset

Must be cold-reset (power-on reset), MCU will
MCU frist running ISP monitor code run from ISP monitor code, for any warm-reset
(include reset-pin, watchdog), MCU will run user
code directly.

Y

NO / Detect whether there ia a
legitimate ISP command

YES
\

Wait ISP command for tens or hundreds
milliseconds, if no legitimate command, MCU
will reset to AP area.

Download user program to AP area.

Y PC application must send command at
first then power on MCU

Reset to AP area running user code

382 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

13.2 STC12C5A60S2 series application circuit for ISP

OIuF

BhhaR

STC3232,STC232,MAX232,SP232

Cl+ Vee
V+ Gnd
Cl- TIOUT

oD vee
|1Gnd

] PC_RxD(COM Pin2)
PC_TxD(COM Pin3)

PC COM

System Power/USB +5V

WA

2+ RIIN
c2- RIOUT[12
o SW1
I v- TIN [T
Crour 12N This part of the circuit Power On O
N reout[3] ha.s nothing to do
with the downloads
otuirio Vee l v
O+UI-PLI
O-+-Mcu-vce Ja 1K /
O-+U1-P3.0 T_|P1.0/ADCO/CLKOUT2 Vee
O Ul-P3l 7 |P1.1/ADCI ADO/P0.0
O+Gnd
3_|P1.2/ADC2/ECI/RXD2 ADI/P0.1 o s
7 |P1.3/ADC3/CCPO/TXD2 AD2/P0.2 e 10uF
5_|P1.4/ADC4/CCPI/SS AD3/P0.3
6_|P1.5/ADCS/MOSI ADA/P0.4 =
i 7_|P1.6/ADC6/MISO ADS5/P0.5
104F T cl 8_|P1.7/ADC7/SCLK AD6/P0.6
—
9_|RST/P4.7 AD7/P0.7
(Il
MCU_RxD(P3.0)
1ok [TRt L — [0 |P3.0/RxD/INT RST2/LVD/P4.6
MCU_TxD(P3.1)
L L [Te.umD ALE/P4.5
[2]ps.2/NT0 NA/P4.4
[=]p3.3iNT1 ADI5/P2.7
[T2]P3.4/TO/NT/CLKOUTO AD14/P2.6
[5]P3.5/TI/INT/CLKOUTI ADI3/P2.5
[e]p3.c/WR ADI12/P2.4
C2<47pF —
[]p3.7®D ADI1/P2.3
USB+5V T1IOUT R1IN GND l_I_\—E XTAL2 AD10/P2.2
| 1 | | 1 X1
6 6 6 o |_I_I_|E XTALL ADO/P2.1
20 | Gnd ADS/P2.0
USBI Cl1<47pF "
| o
Notes:

Traditional 8051's ALE pin regardless of whether access to external data bus, will have a clock frequency
output. The signals is a source of interference to the system. For this reason,STC MCU new added a Enable/
Disable ALE signal output switch, thus reduced MCU internal to external electromagnetic emissions,
improve system stability and reliability. If needs the signal as other peripheral device's clock source, you
can get clock source from CLKOUTO0/P3.4, CLKOUT1/P3.5, CLKOUT2/P1.0 or XTAL2 clock output.
(Recommended a 200ohm series resistor to the XTAL2 pin)

STC MCU Limited.

website:

www.STCMCU.com

383

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Users in their target system, such as the P3.0/P3.1 through the RS-232 level shifter connected to the computer
after the conversion of ordinary RS-232 serial port to connect the system programming / upgrading client
software. If the user panel recommended no RS-232 level converter, should lead to a socket, with Gnd/P3.1/
P3.0/Vcc four signal lines, so that the user system can be programmed directly. Of course, if the six signal lines
can lead to Gnd/P3.1/P3.0/Vcc/P1.1/P1.0 as well, because you can download the program by P1.0/P1.1 ISP ban.
If you can Gnd/P3.1/P3.0/Vce/P1.1/P1.0/Reset seven signal lines leads to better, so you can easily use "offline
download board (no computer)" .

ISP programming on the Theory and Application Guide to see "STC12C5201AD Series MCU Development /
Programming Tools Help"section. In addition, we have standardized programming download tool, the user can
then program into the goal in the above systems, you can borrow on top of it RS-232 level shifter connected to
the computer to download the program used to do. Programming a chip roughly be a few seconds, faster than the
ordinary universal programmer much faster, there is no need to buy expensive third-party programmer?.

PC STC-ISP software downloaded from the website www.STCMCU.com

384 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

13.3 PC side application usage

Si STC-ISP.exe hitp:/fwnww.STCMCU.com Support Mobile:(86)1392

Step 1. Select MCU Type.
MCU Type AP Memory Range

[STC12C5A6052 - oooo - EFFF

Step?: Open code file and EEFROM file
Start (HEX) Check Sum

] [Clear Buffer before Open—Code-File | According to
actual situation
w C1 Euffer bef - -Fi >
0 Bl e (e bt | Dpene MR | the user selects

Step 3. Select COM Port, Max Baud. the a_ppropriate
com: lcomr o« s Max Baud: 1115200 + maximum baud

rate
If Connmection failed, try Max Baud = Min Baud: (2400 =

Stepd: Actiwe following options after Next—PowerlUp/Cold Reset
MCU Clock: ¢ On—Chip EAC clock % External Crystal/Clock

RESET/FP4.T iz used as{ P4.7T,must use external clockis EESET In practice, if P3.0/
After Power—Vp Reset, add extra Reset-DelayTime {+ YES (HO P3.1 already connected

to a RS232/RS485 or
Oseillator Gain(<12MHz can select Low): f High L other equipment, it

Hext Program Code, F1 0/F1.1: (% Hot Related sed = 070] is recommended that
Wext Program Code, erase EEFROM data to FF: (YES % HO selection P1.0 / P1.1

= 0/0 can download
Step 5! Click the Programming buttoen then supply MCU power. options

ISF Programming | | Re-Frogramming \l

r Reload the target program file automatically before
ISP-Frogramming each time, in order to debug easily.

T After the target program file 1z changed, automaticallwy
reload the file, then send ISP-Frogramming command.

Press this button when
mass production

-~

0K Count|0 Clear | Flease pay attention to www. MCU-Memory. .
| ' All new settings

are valid in the
next power-on.

Enable the option in
debugging stage

STC MCU Limited. website: www.STCMCU.com 385

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Stepl : Select MCU type (E.g. STC12C5A60S2)

Step2 : Load user program code (*.bin or *.hex)

Setp3 : Select the serial port you are using

Setp4 : Config the hardware option

Step5 : Press “ISP programming” or “Re-Programming” button to download user program

NOTE : Must press “ISP programming” or “Re-Programming” button first, then power on MCU, otherwise
will cannot download.

About hardware connection
1. MCU RXD (P3.0) ---- RS232 ---- PC COM port TXD (Pin3)
2. MCU TXD (P3.1) ---- RS232 ---- PC COM port RXD (Pin2)
3. MCU GNG------- PC COM port GND (Pin5)
4. RS232 : You can select STC232 / STC3232 / MAX232 / MAX3232/ ...

Using a demo board as a programmer
STC-ISP ver3.0A PCB can be welded into three kinds of circuits, respectively, support the STC's 16/20/28/32
pins MCU, the back plate of the download boards are affixed with labels,users need to pay special attention
to. All the download board is welded 40-pin socket, the socket’s 20-pin is ground line, all types of MCU
should be put on the socket according to the way of alignment with the ground. The method of programming
user code using download board as follow:
1. According to the type of MCU choose supply voltage,
A. For 5V MCU, using jumper JP1 to connect MCU-VCC to +5V pin
B. For 3V MCU, using jumper JP1 to connect MCU-VCC to +3.3V pin
2. Download cable (Provide by STC)
A. Connect DB serial connector to the computer's RS-232 serial interface
B. Plug the USB interface at the same side into your computer's USB port for power supply
C. Connect the USB interface at the other side into STC download board
3. Other interfaces do not need to connect.
4. In a non-pressed state to SW1, and MCU-VCC power LED off.
5. For SW3
P1.0/P1.1 = 1/1 when SW3 is non-pressed
P1.0/P1.1 = 0/0 when SW3 is pressed
If you have select the “Next program code, P1.0/P1.1 Need = 0/0” option, then SW3 must be in a pressed
state
6. Put target MCU into the U1 socket, and locking socket
7. Press the “Download” button in the PC side application
8. Press SW1 switch in the download board
9. Close the demo board power supply and remove the MCU after download successfully.

386 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

13.4 Compiler / Assembler Programmer and Emulator

About Compiler/Assembler
Any traditional compiler / assembler and the popular Keil are suitable for STC MCU. For selection MCU
body, the traditional compiler / assembler, you can choose Intel's 8052 / 87C52 / 87C52 / 87C58 or Philips's
P87C52 / P87C54/P87C58 in the traditional environment, in Keil environment, you can choose the types in
front of the proposed or download the STC chips database file (STC.CDB) from the STC official website.

About Programmer
You can use the STC specific ISP programmer. (Can be purchased from the STC or apply for free sample).
Programmer can be used as demo board

About Emulator

We do not provite specific emulator now. If you have a traditional 8051 emulator, you can use it to simulate
STC MCU’s some 8052 basic functions.

13.5 Self-Defined ISP download Demo

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU using software to custom download code Demo-------------=------- */
/* --- Mobile: (86)13922809991 */
/* --- Fax: 86-755-82905966 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include <reg51.h>
#include <instrins.h>

sfr IAP_CONTR = 0xc7;
sbit MCU_Start Led =P1"7;

#define Self Define ISP Download Command 0x22

#define RELOAD_COUNT 0xfb //18.432MHz,12T,SMOD=0,9600bps
//#define RELOAD_COUNT 0xf6 //18.432MHz,12T,SMOD=0,4800bps
//#define RELOAD_COUNT Oxec //18.432MHz,12T,SMOD=0,2400bps
//#define RELOAD_COUNT 0xd8 //18.432MHz,12T,SMOD=0,1200bps

void serial_port _initial(void);

void send UART (unsigned char);

void UART Interrupt Receive(void);
void soft reset to ISP_Monitor(void);
void delay(void);

void display MCU_Start Led(void);

STC MCU Limited. website: www.STCMCU.com 387

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

void main(void)

{
unsigned chari=0;
serial port_initial(); //Initial UART
display MCU_Start_Led(); //Turn on the work LED
send UART(0x34);//Send UART test data
send UART(0xa7);// Send UART test data
while (1);
b
void send UART (unsigned char 1)
{
ES =0; //Disable serial interrupt
TI=0; //Clear TI flag
SBUF =1i; //send this data
while (!'TI); //wait for the data is sent
TI=0; //clear TI flag
ES =1; //enable serial interrupt
b
void UART Interrupt)Receive(void) interrupt 4 using 1
{
unsigned char k = 0;
if (RI)
{
RI=0;
k = SBUF,
if (k == Self Define ISP _Command) //check the serial data
{
delay(); //delay 1s
delay(); //delay 1s
soft reset to ISP_Monitor();
b
}
if (TT)
{
TI=0;
b
b
void soft reset to ISP_Monitor(void)
{
IAP_CONTR = 0x60; //0110,0000 soft reset system to run ISP monitor
b

STC MCU Limited. website:
388

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

void delay(void)

{
unsigned int j = 0;
unsigned int g = 0;
for (j=0; j<5; j++)

{
for (g=0; g<60000; g++)
{
nop();
nop();
nop();
nop();
nop();
H
H
H
void display MCU_Start Led(void)
{
unsigned char i = 0;
for (i=0; 1<3; i++)
{
MCU_Start Led =0; //Turn on work LED
dejay();
MCU Start Led =1; //Turn off work LED
dejay();
MCU_Start Led =0; //Turn on work LED
b
b
STC MCU Limited. website: www.STCMCU.com 389

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

In addition, the PC-side application also need to make the following settings

options Self-Defined-ISF | Dff-Line-ISP | Check MCV Option| 4/

Self-defined program command, not need a cold start reset.

Baud |ggon | ¥Vedify |Hone - Data |3 vl Stap (1 -

Command 22| B
U‘EE}{) a8 Send

v Beload the fihe antomatieclly if the file 1= changed and
send the Commanid automaticlly

Help

Clicking the "Help" button as show in above figure, we can see the detail explaination as below.

STC_ISP_V4.86 |

1. Add a program which contains self-defined program command into
the user application program
2. After the application received the self-defined program command,
delay one second,

then reset by software to ISP Program
3. The command to reset by software to ISP Program is MOV
ISP_CONTR, #60H.
4. User application program which contains the self-defined program
command, which programs

code in original method. (Note: set the options in "Option’ menu)
5. If selected 'PLO/P1.1 are not related to STC ISP Programming' last
time, then do not worry

about the value of Power-On Flag (POF).
6. If selected ' PL.O/PL.1 need = 0/0 when Programming ' last time,

and

a) if self-defined program does not need P1.0/PL.1 connect to
ground, then clear
Power-On Flag to 0 before reset by software to ISP Program;
b) if it does need PLO/PL1 connect to ground, then keep Power-On
Flagto 1
before reset by software to ISP Program.

390 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Appendix A: Assembly Language Programming
INTRODUCTION

Assembly language is a computer language lying between the extremes of machine language and high-level
language like Pascal or C use words and statements that are easily understood by humans, although still a long
way from "natural" language.Machine language is the binary language of computers.A machine language program
is a series of binary bytes representing instructions the computer can execute.

Assembly language replaces the binary codes of machine language with easy to remember "mnemonics'"that
facilitate programming.For example, an addition instruction in machine language might be represented by the
code "10110011".It might be represented in assembly language by the mnemonic "ADD".Programming with
mnemonics is obviously preferable to programming with binary codes.

Of course, this is not the whole story. Instructions operate on data, and the location of the data is specified by
various "addressing modes" emmbeded in the binary code of the machine language instruction. So, there may be
several variations of the ADD instruction, depending on what is added. The rules for specifying these variations
are central to the theme of assembly language programming.

An assembly language program is not executable by a computer. Once written, the program must undergo
translation to machine language. In the example above, the mnemonic "ADD" must be translated to the binary
code "10110011". Depending on the complexity of the programming environment, this translation may involve
one or more steps before an executable machine language program results. As a minimum, a program called an
"assembler" is required to translate the instruction mnemonics to machine language binary codes. Afurther step
may require a "linker" to combine portions of program from separate files and to set the address in memory at
which th program may execute. We begin with a few definitions.

An assembly language program i a program written using labels, mnemonics, and so on, in which each
statement corresponds to a machine instruction. Assembly language programs, often called source code or
symbolic code, cannot be executed by a computer.

A machine language program is a program containing binary codes that represent instructions to a computer.
Machine language programs, often called object code, are executable by a computer.

A assembler is a program that translate an assembly language program into a machine language program.
The machine language program (object code) may be in "absolute" form or in "relocatable" form. In the latter
case, "linking" is required to set the absolute address for execution.

A linker is a program that combines relocatable object programs (modules) and produces an absolute object
program that is executable by a computer. A linker is sometimes called a "linker/locator" to reflect its separate
functions of combining relocatable modules (linking) and setting the address for execution (locating).

A segment is a unit of code or data memory. A segment may be relocatable or absolute. A relocatable
segment has a name, type, and other attributes that allow the linker to combine it with other paritial segments,
if required, and to correctly locate the segment. An absolute segment has no name and cannot be combined with
other segments.

A module contains one or more segments or partial segments. A module has a name assigned by the user. The
module definitions determine the scope of local symbols. An object file contains one or more modules. A module
may be thought of as a "file" in many instances.

A program consists of a single absolute module, merging all absolute and relocatable segments from all input
modules. A program contains only the binary codes for instructions (with address and data constants) that are
understood by a computer.

STC MCU Limited. website: www.STCMCU.com 301

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
ASSEMBLER OPERATION

There are many assembler programs and other support programs available to facilitate the development of
applications for the 8051 microcontroller. Intel's original MCS-51 family assembler, ASM51, is no longer
available commercially. However, it set the standard to which the others are compared.

ASMS51 is a powerful assembler with all the bells and whistles. It is available on Intel development systems
and on the IBM PC family of microcomputers. Since these "host" computers contain a CPU chip other than the
8051, ASM51 is called a cross assembler. An 8051 source program may be written on the host computer (using
any text editor) and may be assembled to an object file and listing file (using ASM51), but the program may not
be executed. Since the host system's CPU chip is not an 8051, it does not understand the binary instruction in the
object file. Execution on the host computer requires either hardware emulation or software simulation of the target
CPU. A third possibility is to download the object program to an 8051-based target system for execution.

ASMS51 is invoked from the system prompt by

ASMS51 source file [assembler controls]

The source file is assembled and any assembler controls specified take effect. The assembler receives a source
file as input (e.g., PROGRAM.SRC) and generates an object file (PROGRAM.OBJ) and listing file (PROGRAM.
LST) as output. This is illustrated in Figure 1.

Since most assemblers scan the source program twice in performing the translation to machine language,
they are described as two-pass assemblers. The assembler uses a location counter as the address of instructions
and the values for labels. The action of each pass is described below.

PROGRAM.OBJ
PROGRAM.SRC
Legend PROGRAM.LST
O Utility program
[J User file

Figure 1 Assembling a source program

Pass one

During the first pass, the source file is scanned line-by-line and a symbol table is built. The location counter
defaults to 0 or is set by the ORG (set origin) directive. As the file is scanned, the location counter is incremented
by the length of each instruction. Define data directives (DBs or DWs) increment the location counter by the
number of bytes defined. Reserve memory directives (DSs) increment the location counter by the number of bytes
reserved.

Each time a label is found at the beginning of a line, it is placed in the symbol table along with the current
value of the location counter. Symbols that are defined using equate directives (EQUs) are placed in the symbol
table along with the "equated" value. The symbol table is saved and then used during pass two.

Pass two

During pass two, the object and listing files are created. Mnemonics are converted to opcodes and placed in
the output files. Operands are evaluated and placed after the instruction opcodes. Where symbols appear in the
operand field, their values are retrieved from the symbol table (created during pass one) and used in calculating
the correct data or addresses for the instructions.

Since two passes are performed, the source program may use "forward references", that is, use a symbol
before it is defined. This would occur, for example, in branching ahead in a program.

392 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

The object file, if it is absolute, contains only the binary bytes (00H-OFH) of the machine language program.
A relocatable object file will also contain a sysmbol table and other information required for linking and locating.
The listing file contains ASCII text codes (02H-7EH) for both the source program and the hexadecimal bytes in
the machine language program.

A good demonstration of the distinction between an object file and a listing file is to display each on the
host computer's CRT display (using, for example, the TYPE command on MS-DOS systems). The listing file
clearly displays, with each line of output containing an address, opcode, and perhaps data, followed by the
program statement from the source file. The listing file displays properly because it contains only ASCII text
codes. Displaying the object file is a problem, however. The output will appear as "garbage", since the object file
contains binary codes of an 8051 machine language program, rather than ASCII text codes.

ASSEMBLY LANGUAGE PROGRAM FORMAT

Assembly language programs contain the following:

* Machine instructions

» Assembler directives

» Assembler controls

* Comments

Machine instructions are the familiar mnemonics of executable instructions (e.g., ANL). Assembler directives
are instructions to the assembler program that define program structure, symbols, data, constants, and so on (e.g.,
ORG). Assembler controls set assembler modes and direct assembly flow (e.g., STITLE). Comments enhance the
readability of programs by explaining the purpose and operation of instruction sequences.

Those lines containing machine instructions or assembler directives must be written following specific rules
understood by the assembler. Each line is divided into "fields" separated by space or tab characters. The general
format for each line is as follows:

[label:] mnemonic [operand] [, operand] [...]1 [;commernt]

Only the mnemonic field is mandatory. Many assemblers require the label field, if present, to begin on the left in
column 1, and subsequent fields to be separated by space or tab charecters. With ASMS1, the label field needn't
begin in column 1 and the mnemonic field needn't be on the same line as the label field. The operand field must,
however, begin on the same line as the mnemonic field. The fields are described below.

Label Field

A label represents the address of the instruction (or data) that follows. When branching to this instruction, this
label is usded in the operand field of the branch or jump instruction (e.g., SIMP SKIP).

Whereas the term "label" always represents an address, the term "symbol" is more general. Labels are
one type of symbol and are identified by the requirement that they must terminate with a colon(:). Symbols
are assigned values or attributes, using directives such as EQU, SEGMENT, BIT, DATA, etc. Symbols may be
addresses, data constants, names of segments, or other constructs conceived by the programmer. Symbols do not
terminate with a colon. In the example below, PAR is a symbol and START is a label (which is a type of symbol).

PAR EQU 500 ;"PAR" IS A SYMBOL WHICH
;REPRESENTS THE VALUE 500

START: MOV A#0FFH ;"START" IS A LABEL WHICH
;REPRESENTS THE ADDRESS OF
;THE MOV INSTRUCTION

A symbol (or label) must begin with a letter, question mark, or underscore (_); must be followed by letters,
digit, "?", or "_"; and can contain up to 31 characters. Symbols may use upper- or lowercase characters, but they
are treated the same. Reserved words (mnemonics, operators, predefined symbols, and directives) may not be
used.

STC MCU Limited. website: www.STCMCU.com 303

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Mnemonic Field

Intruction mnemonics or assembler directives go into mnemonic field, which follows the label field. Examples of
instruction mnemonics are ADD, MOV, DIV, or INC. Examples of assembler directives are ORG, EQU, or DB.

Operand Field

The operand field follows the mnemonic field. This field contains the address or data used by the instruction. A
label may be used to represent the address of the data, or a symbol may be used to represent a data constant. The
possibilities for the operand field are largely dependent on the operation. Some operations have no operand (e.g.,
the RET instruction), while others allow for multiple operands separated by commas. Indeed, the possibilties for
the operand field are numberous, and we shall elaborate on these at length. But first, the comment field.

Comment Field

Remarks to clarify the program go into comment field at the end of each line. Comments must begin with a
semicolon (;). Each lines may be comment lines by beginning them with a semicolon. Subroutines and large
sections of a program generally begin with a comment block—serveral lines of comments that explain the general
properties of the section of software that follows.

Special Assembler Symbols

Special assembler symbols are used for the register-specific addressing modes. These include A, RO through
R7, DPTR, PC, C and AB. In addition, a dollar sign ($) can be used to refer to the current value of the location
counter. Some examples follow.

SETB C
INC DPTR
INB 11,8

The last instruction above makes effective use of ASM51's location counter to avoid using a label. It could also be
written as
HERE: JNB TI, HERE

Indirect Address

For certain instructions, the operand field may specify a register that contains the address of the data. The
commercial "at" sign (@) indicates address indirection and may only be used with RO, R1, the DPTR, or the PC,
depending on the instruction. For example,

ADD A, @RO

MOVC A, @A+PC

The first instruction above retrieves a byte of data from internal RAM at the address specified in RO. The second
instruction retrieves a byte of data from external code memory at the address formed by adding the contents of
the accumulator to the program counter. Note that the value of the program counter, when the add takes place, is
the address of the instruction following MOVC. For both instruction above, the value retrieved is placed into the
accumulator.

Immediate Data

Instructions using immediate addressing provide data in the operand field that become part of the instruction.
Immediate data are preceded with a pound sign (#). For example,

394 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

CONSTANT EQU 100
MOV A, #0FEH
ORL 40H , #CONSTANT

All immediate data operations (except MOV DPTR,#data) require eight bits of data. The immediate data are
evaluated as a 16-bit constant, and then the low-byte is used. All bits in the high-byte must be the same (00H or
FFH) or the error message "value will not fit in a byte" is generated. For example, the following instructions are
syntactically correct:

MOV A, #0FFOOH

MOV A, #00FFH

But the following two instructions generate error messages:
MOV A, #0FEOOH
MOV A, #01FFH

If signed decimal notation is used, constants from -256 to +255 may also be used. For example, the following
two instructions are equivalent (and syntactically correct):
MOV A, #-256
MOV A, #0FFOOH

Both instructions above put 00H into accumulator A.

Data Address

Many instructions access memory locations using direct addressing and require an on-chip data memory address
(00H to 7FH) or an SFR address (80H to OFFH) in the operand field. Predefined symbols may be used for the
SFR addresses. For example,

MOV A,45H

MOV A, SBUF ;SAME AS MOV A, 99H

Bit Address

One of the most powerful features of the 8051 is the ability to access individual bits without the need for masking
operations on bytes. Instructions accessing bit-addressable locations must provide a bit address in internal data
memory (00h to 7FH) or a bit address in the SFRs (80H to OFFH).

There are three ways to specify a bit address in an instruction: (a) explicitly by giving the address, (b) using
the dot operator between the byte address and the bit position, and (c) using a predefined assembler symbol. Some
examples follow.

SETB OE7H ;EXPLICIT BIT ADDRESS
SETB ACC.7 ;DOT OPERATOR (SAME AS ABOVE)
JNB TI, $;"TI" IS A PRE-DEFINED SYMBOL
JNB 99H,$:(SAME AS ABOVE)

Code Address

A code address is used in the operand field for jump instructions, including relative jumps (SJMP and conditional
jumps), absolute jumps and calls (ACALL, AJMP), and long jumps and calls (LJMP, LCALL).
The code address is usually given in the form of a label.

ASMS51 will determine the correct code address and insert into the instruction the correct 8-bit signed offset,
11-bit page address, or 16-bit long address, as appropriate.

STC MCU Limited. website: www.STCMCU.com 305

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Generic Jumps and Calls

ASMS51 allows programmers to use a generic JMP or CALL mnemonic. "JMP" can be used instead of SIMP,
AJMP or LIMP; and "CALL" can be used instead of ACALL or LCALL. The assembler converts the generic
mnemonic to a "real" instruction following a few simple rules. The generic mnemonic converts to the short form
(for JMP only) if no forward references are used and the jump destination is within -128 locations, or to the
absolute form if no forward references are used and the instruction following the JMP or CALL instruction is in
the same 2K block as the destination instruction. If short or absolute forms cannot be used, the conversion is to
the long form.

The conversion is not necessarily the best programming choice. For example, if branching ahead a few
instrucions, the generic JMP will always convert to LIMP even though an SIMP is probably better. Consider the
following assembled instructions sequence using three generic jumps.

LOC OBJ LINE SOURCE

1234 1 ORG 1234H
1234 04 2 START: INC A
1235 80FD 3 IMP START ;ASSEMBLES AS SIMP
12FC 4 ORG START + 200
12FC 4134 5 IMP START ;ASSEMBLES AS AJMP
12FE 021301 6 IMP FINISH ;JASSEMBLES AS LIMP
1301 04 7 FINISH: INC A

8 END

The first jump (line 3) assembles as SIMP because the destination is before the jump (i.e., no forward reference)
and the offset is less than -128. The ORG directive in line 4 creates a gap of 200 locations between the label
START and the second jump, so the conversion on line 5 is to AJIMP because the offset is too great for SIMP.
Note also that the address following the second jump (12FEH) and the address of START (1234H) are within the
same 2K page, which, for this instruction sequence, is bounded by 1000H and 17FFH. This criterion must be met
for absolute addressing. The third jump assembles as LIMP because the destination (FINISH) is not yet defined
when the jump is assembled (i.e., a forward reference is used). The reader can verify that the conversion is as
stated by examining the object field for each jump instruction.

ASSEMBLE-TIME EXPRESSION EVALUATION

Values and constants in the operand field may be expressed three ways: (a) explicitly (e.g.,0EFH), (b) with a
predefined symbol (e.g., ACC), or (c) with an expression (e.g.,2 + 3). The use of expressions provides a powerful
technique for making assembly language programs more readable and more flexible. When an expression is used,
the assembler calculates a value and inserts it into the instruction.
All expression calculations are performed using 16-bit arithmetic; however, either 8 or 16 bits are inserted

into the instruction as needed. For example, the following two instructions are the same:

MOV DPTR, #04FFH +3

MOV DPTR, #0502H ;ENTIRE 16-BIT RESULT USED

If the same expression is used in a "MOV A #data" instruction, however, the error message "value will not fit in a
byte" is generated by ASM51. An overview of the rules for evaluateing expressions follows.

396 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Number Bases

The base for numeric constants is indicated in the usual way for Intel microprocessors. Constants must be
followed with "B" for binary, "O" or "Q" for octal, "D" or nothing for decimal, or "H" for hexadecimal. For
example, the following instructions are the same:

MOV A, #15H
MOV A, #1111B
MOV A, #0FH
MOV A, #17Q
MOV A, #15D

Note that a digit must be the first character for hexadecimal constants in order to differentiate them from labels (i.e.,
"0OAS5H" not "ASH").

Charater Strings

Strings using one or two characters may be used as operands in expressions. The ASCII codes are converted to the
binary equivalent by the assembler. Character constants are enclosed in single quotes (*). Some examples follow.
CINE A, #'Q', AGAIN

SUBB A, #'0' ;CONVERT ASCII DIGIT TO BINARY DIGIT
MOV DPTR, #'AB'
MOV DPTR, #4142H ;SAME AS ABOVE

Arithmetic Operators
The arithmetic operators are

+ addition

- subtraction

* multiplication
/ division

MOD modulo (remainder after division)

For example, the following two instructions are same:
MOV A, 10 +10H
MOV A, #1AH

The following two instructions are also the same:
MOV A, #25MOD 7
MOV A, #4

Since the MOD operator could be confused with a symbol, it must be seperated from its operands by at least one
space or tab character, or the operands must be enclosed in parentheses. The same applies for the other operators
composed of letters.

Logical Operators

The logical operators are
OR logical OR
AND logical AND
XOR logical Exclusive OR
NOT logical NOT (complement)

STC MCU Limited. website: www.STCMCU.com 397

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

The operation is applied on the corresponding bits in each operand. The operator must be separated from the
operands by space or tab characters. For example, the following two instructions are the same:

MOV A,#'9" AND OFH

MOV A, #9

The NOT operator only takes one operand. The following three MOV instructions are the same:
THREE EQU 3
MINUS_THREE EQU -3

MOV A, #(NOT THREE) + |

MOV A, #MINUS_THREE

MOV A, #11111101B

Special Operators

The sepcial operators are
SHR shift right
SHL shift left
HIGH high-byte
LOW low-byte
0 evaluate first

For example, the following two instructions are the same:
MOV A, #8 SHL 1
MOV A, #10H

The following two instructions are also the same:
MOV A,#HIGH 1234H
MOV A #12H

Relational Operators

When a relational operator is used between two operands, the result is alwalys false (0000H) or true (FFFFH).
The operators are

EQ = equals

NE <> not equals

LT < less than

LE <= less than or equal to
GT > greater than

GE >= greater than or equal to

Note that for each operator, two forms are acceptable (e.g., "EQ" or "="). In the following examples, all relational
tests are "true":

MOV A, #5=5

MOV A#5NE4

MOV A#'X' LT 'Z

MOV A#'X' >='X'

MOV A#$>0

MOV A#100 GE 50

308 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

So, the assembled instructions are equal to

MOV A, #0FFH

Even though expressions evaluate to 16-bit results (i.e., OFFFFH), in the examples above only the low-order
eight bits are used, since the instruction is a move byte operation. The result is not considered too big in this case,
because as signed numbers the 16-bit value FFFFH and the 8-bit value FFH are the same (-1).

Expression Examples
The following are examples of expressions and the values that result:

Expression Result
'B'-'A' 0001H
8/3 0002H
155 MOD 2 0001H
4*4 0010H
8 AND 7 0000H
NOT 1 FFFEH
'A' SHL 8 4100H
LOW 65535 00FFH
@8+1)*2 0012H
SEQ4 0000H
'A' LT 'B' FFFFH
3<=3 FFFFHss

A practical example that illustrates a common operation for timer initialization follows: Put -500 into Timer 1
registers TH1 and TL1. In using the HIGH and LOW operators, a good approach is
VALUE EQU -500
MOV THI,#HIGH VALUE
MOV TL1,#LOW VALUE
The assembler converts -500 to the corresponding 16-bit value (FEOCH); then the HIGH and LOW operators
extract the high (FEH) and low (OCH) bytes. as appropriate for each MOV instruction.

Operator Precedence
The precedence of expression operators from highest to lowest is

0)

HIGH LOW

* / MOD SHL SHR

+-

EQ NE LT LE GT GE = <> < <= > >=
NOT

AND

OR XOR

When operators of the same precedence are used, they are evaluated left to right.

Examples:
Expression Value
HIGH ('A' SHL 8) 0041H
HIGH 'A'SHL8 0000H
NOT 'A'-1 FFBFH
'A' OR 'A'SHL 8 4141H

STC MCU Limited. website: www.STCMCU.com 399

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
ASSEMBLER DIRECTIVES

Assembler directives are instructions to the assembler program. They are not assembly language instructions
executable by the target microprocessor. However, they are placed in the mnemonic field of the program. With the
exception of DB and DW, they have no direct effect on the contents of memory.

ASMS51 provides several catagories of directives:

» Assembler state control (ORG, END, USING)

« Symbol definition (SEGMENT, EQU, SET, DATA, IDATA, XDATA, BIT, CODE)
« Storage initialization/reservation (DS, DBIT, DB, DW)

» Program linkage (PUBLIC, EXTRN,NAME)

» Segment selection (RSEG, CSEG, DSEG, ISEG, ESEG, XSEG)

Each assembler directive is presented below, ordered by catagory.

Assembler State Control

ORG (Set Origin) The format for the ORG (set origin) directive is
ORG expression
The ORG directive alters the location counter to set a new program origin for statements that follow. A label is
not permitted. Two examples follow.
ORG 100H ;SET LOCATION COUNTER TO 100H
ORG ($ +1000H) AND OFO00H ;SET TO NEXT 4K BOUNDARY
The ORG directive can be used in any segment type. If the current segment is absolute, the value will be an

absolute address in the current segment. If a relocatable segment is active, the value of the ORG expression is
treated as an offset from the base address of the current instance of the segment.

End The format of the END directive is
END

END should be the last statement in the source file. No label is permitted and nothing beyond the END statement
is processed by the assembler.

Using The format of the END directive is
USING expression

This directive informs ASMS51 of the currently active register bank. Subsequent uses of the predefined symbolic
register addresses ARO to AR7 will convert to the appropriate direct address for the active register bank. Consider
the following sequence:

USING 3
PUSH AR7
USING 1
PUSH AR7

The first push above assembles to PUSH 1FH (R7 in bank 3), whereas the second push assembles to PUSH OFH
(R7 in bank 1).

Note that USING does not actually switch register banks; it only informs ASMS51 of the active bank.
Executing 8051 instructions is the only way to switch register banks. This is illustrated by modifying the example
above as follows:

400 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

MOV PSW, #00011000B ;SELECT REGISTER BANK 3

USING 3

PUSH AR7 ;JASSEMBLE TO PUSH 1FH

MOV PSW, #00001000B ;SELECT REGISTER BANK 1

USING 1

PUSH AR7 ;ASSEMBLE TO PUSH 0FH
Symbol Definition

The symbol definition directives create symbols that represent segment, registers, numbers, and addresses. None
of these directives may be preceded by a label. Symbols defined by these directives may not have been previously
defined and may not be redefined by any means. The SET directive is the only exception. Symbol definiton
directives are described below.
Segment The format for the SEGMENT directive is shown below.
symbol SEGMENT segment _type

The symbol is the name of a relocatable segment. In the use of segments, ASM51 is more complex than
conventional assemblers, which generally support only "code" and "data" segment types. However, ASM51
defines additional segment types to accommodate the diverse memory spaces in the 8051. The following are the
defined 8051 segment types (memory spaces):

* CODE (the code segment)

* XDATA (the external data space)

* DATA (the internal data space accessible by direct addressing, 00H-07H)

» IDATA (the entire internal data space accessible by indirect addressing, 00H—07H)
« BIT (the bit space; overlapping byte locations 20H-2FH of the internal data space)

For example, the statement
EPROM SEGMENT CODE

declares the symbol EPROM to be a SEGMENT of type CODE. Note that this statement simply declares what
EPROM is. To actually begin using this segment, the RSEG directive is used (see below).

EQU (Equate) The format for the EQU directive is
Symbol EQU expression

The EQU directive assigns a numeric value to a specified symbol name. The symbol must be a valid symbol
name, and the expression must conform to the rules described earlier.
The following are examples of the EQU directive:

N27 EQU 27 ;SET N27 TO THE VALUE 27
HERE EQU $;SET "HERE" TO THE VALUE OF
;THE LOCATION COUNTER
CR EQU ODH ;SET CR (CARRIAGE RETURN) TO 0DH
MESSAGE: DB 'This is a message'
LENGTH EQU $ - MESSAGE ;"LENGTH" EQUALS LENGTH OF "MESSAGE"
Other Symbol Definition Directives The SET directive is similar to the EQU directive except the

symbol may be redefined later, using another SET directive.

STC MCU Limited. website: www.STCMCU.com 401

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

The DATA, IDATA, XDATA, BIT, and CODE directives assign addresses of the corresponding segment
type to a symbol. These directives are not essential. A similar effect can be achieved using the EQU directive; if
used, however, they evoke powerful type-checking by ASMS51. Consider the following two directives and four
instructions:

FLAGI EQU 05H
FLAG2 BIT 05H
SETB FLAGI

SETB FLAG2
MOV FLAGI, #0
MOV FLAG2, #0

The use of FLAG?2 in the last instruction in this sequence will generate a "data segment address expected" error
message from ASM51. Since FLAG2 is defined as a bit address (using the BIT directive), it can be used in a set
bit instruction, but it cannot be used in a move byte instruction. Hence, the error. Even though FLAGI represents
the same value (05H), it was defined using EQU and does not have an associated address space. This is not an
advantage of EQU, but rather, a disadvantage. By properly defining address symbols for use in a specific memory
space (using the directives BIT, DATA, XDATA ect.), the programmer takes advantage of ASM51's powerful
type-checking and avoids bugs from the misuse of symbols.

Storage Initialization/Reservation

The storage initialization and reservation directives initialize and reserve space in either word, byte, or bit units.
The space reserved starts at the location indicated by the current value of the location counter in the currently
active segment. These directives may be preceded by a label. The storage initialization/reservation directives are
described below.

DS (Define Storage) The format for the DS (define storage) directive is
[label:] DS expression

The DS directive reserves space in byte units. It can be used in any segment type except BIT. The expression
must be a valid assemble-time expression with no forward references and no relocatable or external references.
When a DS statement is encountered in a program, the location counter of the current segment is incremented by
the value of the expression. The sum of the location counter and the specified expression should not exceed the
limitations of the current address space.

The following statement create a 40-byte buffer in the internal data segment:

DSEG AT 30H ;PUT IN DATA SEGMENT (ABSOLUTE, INTERNAL)
LENGTH EQU 40
BUFFER: DS LENGRH ;40 BYTES RESERVED

The label BUFFER represents the address of the first location of reserved memory. For this example, the buffer
begins at address 30H because "AT 30H" is specified with DSEG. The buffer could be cleared using the following
instruction sequence:

MOV R7, #LENGTH
MOV RO, #BUFFER

LOOP: MOV @RO, #0
DINZ R7,LOOP
(continue)

402 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

To create a 1000-byte buffer in external RAM starting at 4000H, the following directives could be used:

XSTART EQU 4000H
XLENGTH EQU 1000

XSEG AT XSTART
XBUFFER: DS XLENGTH

This buffer could be cleared with the following instruction sequence:

MOV DPTR, #XBUFFER
LOOP: CLR A
MOVX (@DPTR, A
INC DPTR
MOV A, DPL
CINE A, #LOW (XBUFFER + XLENGTH + 1), LOOP
MOV A, DPH
CINE A, #HIGH (XBUFFER + XLENGTH + 1), LOOP
(continue)

This is an excellent example of a powerful use of ASM51's operators and assemble-time expressions. Since an
instruction does not exist to compare the data pointer with an immediate value, the operation must be fabricated
from available instructions. Two compares are required, one each for the high- and low-bytes of the DPTR.
Furthermore, the compare-and-jump-if-not-equal instruction works only with the accumulator or a register, so
the data pointer bytes must be moved into the accumulator before the CJNE instruction. The loop terminates only
when the data pointer has reached XBUFFER + LENGTH + 1. (The "+1" is needed because the data pointer is
incremented after the last MOV X instruction.)

DBIT The format for the DBIT (define bit) directive is,
[label:] DBIT expression

The DBIT directive reserves space in bit units. It can be used only in a BIT segment. The expression must be
a valid assemble-time expression with no forward references. When the DBIT statement is encountered in a
program, the location counter of the current (BIT) segment is incremented by the value of the expression. Note
that in a BIT segment, the basic unit of the location counter is bits rather than bytes. The following directives
creat three flags in a absolute bit segment:

BSEG ;BIT SEGMENT (ABSOLUTE)
KEFLAG: DBIT 1 ;KEYBOARD STATUS
PRFLAG: DBIT 1 ;PRINTER STATUS
DKFLAG: DBIT 1 ;DISK STATUS

Since an address is not specified with BSEG in the example above, the address of the flags defined by DBIT could
be determined (if one wishes to to so) by examining the symbol table in the .LST or .M51 files. If the definitions
above were the first use of BSEG, then KBFLAG would be at bit address 00H (bit 0 of byte address 20H). If other
bits were defined previously using BSEG, then the definitions above would follow the last bit defined.

DB (Define Byte) The format for the DB (define byte) directive is,
[label:] DB expression [, expression] [...]

The DB directive initializes code memory with byte values. Since it is used to actually place data constants in
code memory, a CODE segment must be active. The expression list is a series of one or more byte values (each of
which may be an expression) separated by commas.

STC MCU Limited. website: www.STCMCU.com 403

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

The DB directive permits character strings (enclosed in single quotes) longer than two characters as long as they
are not part of an expression. Each character in the string is converted to the corresponding ASCII code. If a label
is used, it is assigned the address of th first byte. For example, the following statements

CSEG AT 0100H
SQUARES: DB 0,1,4,9, 16,25 ;SQUARES OF NUMBERS 0-5
MESSAGE: DB 'Login:', 0 ;NULL-TERMINATED CHARACTER STRING
When assembled, result in the following hexadecimal memory assignments for external code memory:
Address Contents
0100 00
0101 01
0102 04
0103 09
0104 10
0105 19
0106 4C
0107 6F
0108 67
0109 69
010A 6E
010B 3A
010C 00

DW (Define Word) The format for the DW (define word) directive is
[label:] DW expression [, expression] [...]

The DW directive is the same as the DB directive except two memory locations (16 bits) are assigned for each
data item. For example, the statements

CSEG AT 200H
DW $,'A', 1234H, 2, 'BC'

result in the following hexadecimal memory assignments:

Address Contents
0200 02
0201 00
0202 00
0203 41
0204 12
0205 34
0206 00
0207 02
0208 42
0209 43

Program Linkage

Program linkage directives allow the separately assembled modules (files) to communicate by permitting
intermodule references and the naming of modules. In the following discussion, a "module" can be considered a
"file." (In fact, a module may encompass more than one file.)

404 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Public The format for the PUBLIC (public symbol) directive is
PUBLIC symbol [, symbol] [...]

The PUBLIC directive allows the list of specified symbols to known and used outside the currently assembled
module. A symbol declared PUBLIC must be defined in the current module. Declaring it PUBLIC allows it to be
referenced in another module. For example,

PUBLIC INCHAR, OUTCHR, INLINE, OUTSTR

Extrn The format for the EXTRN (external symbol) directive is
EXTRN segment type (symbol [, symbol] [...],...)

The EXTRN directive lists symbols to be referenced in the current module that are defined in other modules. The
list of external symbols must have a segment type associated with each symbol in the list. (The segment types
are CODE, XDATA, DATA, IDATA, BIT, and NUMBER. NUMBER s a type-less symbol defined by EQU.)
The segment type indicates the way a symbol may be used. The information is important at link-time to ensure
symbols are used properly in different modules.

The PUBLIC and EXTRN directives work together. Consider the two files, MAIN.SRC and MESSAGES.
SRC. The subroutines HELLO and GOOD_BYE are defined in the module MESSAGES but are made available
to other modules using the PUBLIC directive. The subroutines are called in the module MAIN even though they
are not defined there. The EXTRN directive declares that these symbols are defined in another module.

MAIN.SRC:

EXTRN CODE (HELLO, GOOD_BYE)
CALL HELLO

CALL GOOD BYE

END

MESSAGES.SRC:
PUBLIC HELLO, GOOD BYE

HELLO: (begin subroutine)
RET
GOOD_BYE: (begin subroutine)
RET
END
Neither MAIN.SRC nor MESSAGES.SRC is a complete program; they must be assembled separately and
linked together to form an executable program. During linking, the external references are resolved with correct

addresses inserted as the destination for the CALL instructions.

Name The format for the NAME directive is
NAME module name

STC MCU Limited. website: www.STCMCU.com 405

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

All the usual rules for symbol names apply to module names. If a name is not provided, the module takes on
the file name (without a drive or subdirectory specifier and without an extension). In the absence of any use
of the NAME directive, a program will contain one module for each file. The concept of "modules," therefore,
is somewhat cumbersome, at least for relatively small programming problems. Even programs of moderate
size (encompassing, for example, several files complete with relocatable segments) needn't use the NAME
directive and needn't pay any special attention to the concept of "modules." For this reason, it was mentioned in
the definition that a module may be considered a "file," to simplify learning ASMS51. However, for very large
programs (several thousand lines of code, or more), it makes sense to partition the problem into modules, where,
for example, each module may encompass several files containing routines having a common purpose.

Segment Selection Directives

When the assembler encounters a segment selection directive, it diverts the following code or data into the
selected segment until another segment is selected by a segment selection directive. The directive may select may
select a previously defined relocatable segment or optionally create and select absolute segments.

RSEG (Relocatable Segment) The format for the RSEG (relocatable segment) directive is
RSEG segment name

Where "segment name" is the name of a relocatable segment previously defined with the SEGMENT directive.
RSEG is a "segment selection" directive that diverts subsequent code or data into the named segment until another
segment selection directive is encountered.

Selecting Absolute Segments RSEG selects a relocatable segment. An "absolute" segment, on the other
hand, is selected using one of the directives:

CSEG (AT address)
DSEG (AT address)
ISEG (AT address)
BSEG (AT address)
XSEG (AT address)

These directives select an absolute segment within the code, internal data, indirect internal data, bit, or external
data address spaces, respectively. If an absolute address is provided (by indicating "AT address"), the assembler
terminates the last absolute address segment, if any, of the specified segment type and creates a new absolute
segment starting at that address. If an absolute address is not specified, the last absolute segment of the specified
type is continuted. If no absolute segment of this type was previously selected and the absolute address is omitted,
a new segment is created starting at location 0. Forward references are not allowed and start addresses must be
absolute.

Each segment has its own location counter, which is always set to 0 initially. The default segment is an
absolute code segment; therefore, the initial state of the assembler is location 0000H in the absolute code segment.
When another segment is chosen for the first time, the location counter of the former segment retains the last
active value. When that former segment is reselected, the location counter picks up at the last active value. The
ORG directive may be used to change the location counter within the currently selected segment.

ASSEMBLER CONTROLS

Assembler controls establish the format of the listing and object files by regulating the actions of ASM51. For the
most part, assembler controls affect the look of the listing file, without having any affect on the program itself.
They can be entered on the invocation line when a program is assembled, or they can be placed in the source file.
Assembler controls appearing in the source file must be preceded with a dollor sign and must begin in column 1.

406 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

There are two categories of assembler controls: primary and general. Primary controls can be placed in the
invocation line or at the beginnig of the source program. Only other primary controls may precede a primary
control. General controls may be placed anywhere in the source program.

LINKER OPERATION

In developing large application programs, it is common to divide tasks into subprograms or modules containing
sections of code (usually subroutines) that can be written separately from the overall program. The term "modular
programming" refers to this programming strategy. Generally, modules are relocatable, meaning they are not
intended for a specific address in the code or data space. A linking and locating program is needed to combine the
modules into one absolute object module that can be executed.

Intel's RL51 is a typical linker/locator. It processes a series of relocatable object modules as input and creates
an executable machine language program (PROGRAM, perhaps) and a listing file containing a memory map and
symbol table (PROGRAM.M51). This is illustrated in following figure.

FILE3.0BJ PROGRAM.ABS
FILE2.0OBJ
FILE1.OBJ

PROGRAM.MAP
Legend

O Utility program
[User file

Linker operation

As relocatable modules are combined, all values for external symbols are resolved with values inserted into
the output file. The linker is invoked from the system prompt by

RL51 input_list [TO output file] [location_controls]

The input_list is a list of relocatable object modules (files) separated by commas. The output list is the name
of the output absolute object module. If none is supplied, it defaults to the name of the first input file without any
suffix. The location_controls set start addresses for the named segments.

For example, suppose three modules or files (MAIN.OBJ, MESSAGES.OBJ, and SUBROUTINES.OBJ) are
to be combined into an executable program (EXAMPLE), and that these modules each contain two relocatable
segments, one called EPROM of type CODE, and the other called ONCHIP of type DATA. Suppose further that
the code segment is to be executable at address 4000H and the data segment is to reside starting at address 30H (in
internal RAM). The following linker invocation could be used:

RS51 MAIN.OBJ, MESSAGES.OBJ, SUBROUTINES.OBJ TO EXAMPLE & CODE
(EPROM (4000H) DATA (ONCHIP (30H))

Note that the ampersand character "&" is used as the line continuaton character.

If the program begins at the label START, and this is the first instruction in the MAIN module, then
execution begins at address 4000H. If the MAIN module was not linked first, or if the label START is not at the
beginning of MAIN, then the program's entry point can be determined by examining the symbol table in the
listing file EXAMPLE.M51 created by RL51. By default, EXAMPLE.M51 will contain only the link map. If
a symbol table is desired, then each source program must have used the SDEBUG control. The following table
shows the assembler controls supported by ASMS51.

STC MCU Limited. website: www.STCMCU.com 407

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412 Fax:86-755-82905966

Assembler controls supported by ASMS51
PRIMARY/
NAME GENERAL DEFAULT ABBREV. MEANING
DATE (date) P DATE() DA [Place string in header (9 char. max.)
DEBUG P NODEBUG DB |Outputs debug symbol information to object file
EJECT G not applicable EJ Continue listing on next page
ERRORPRINT P NOERRORPRINT EP Designates a file to receive error messages in addition to the
(file) listing file (defauts to console)
NOERRORPRINT P NOERRORPRINT NOEP |Designates that error messages will be printed in listing file
only
GEN G GENONLY GO List only the fully expanded source as if all lines generated
by a macro call were already in the source file
GENONLY G GENONLY NOGE |List only the original source text in the listing file
INCLUED(file) G not applicable IC Designates a file to be included as part of the program
LIST G LIST LI Print subsequent lines of source code in listing file
NOLIST G LIST NOLI [Do not print subsequent lines of source code in lisitng file
MACRO P MACRO(50) MR [Evaluate and expand all macro calls. Allocate percentage of]
(men_precent) free memory for macro processing
NOMACRO P MACRO(50) NOMR |Do not evalutate macro calls
MOD51 P MODS51 MO [Recognize the 8051-specific predefined special function
registers
NOMODS51 P MOD51 NOMO [Do not recognize the 8051-specific predefined special
function registers
OBJECT(file) P OBJECT(source.OBJ) (02) Designates file to receive object code
NOOBJECT P OBJECT(source.OBJ)| NOOJ |Designates that no object file will be created
PAGING P PAGING PI Designates that listing file be broken into pages and each
will have a header
NOPAGING P PAGING NOPI [Designates that listing file will contain no page breaks
PAGELENGTH P PAGELENGT(60) PL Sets maximun number of lines in each page of listing file
N) (range=10 to 65536)
PAGE WIDTH (N) P PAGEWIDTH(120) PW |Set maximum number of characters in each line of listing
file (range = 72 to 132)
PRINT(file) P PRINT(source.LST) PR Designates file to receive source listing
NOPRINT P PRINT(source.LST) | NOPR |Designates that no listing file will be created
SAVE G not applicable SA Stores current control settings from SAVE stack
RESTORE G not applicable RS Restores control settings from SAVE stack
REGISTERBANK P REGISTERBANK(0) RB Indicates one or more banks used in program module
(1b,...)
NOREGISTER- P REGISTERBANK(0)| NORB |Indicates that no register banks are used
BANK
SYMBOLS P SYMBOLS SB Creates a formatted table of all symbols used in program
NOSYMBOLS P SYMBOLS NOSB [Designates that no symbol table is created
TITLE(string) G TITLE() TT Places a string in all subsequent page headers (max.60
characters)
WORKFILES P same as source WEF |Designates alternate path for temporay workfiles
(path)
XREF P NOXREF XR [Creates a cross reference listing of all symbols used in
program
NOXREF P NOXREF NOXR |Designates that no cross reference list is created

408

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

MACROS

The macro processing facility (MPL) of ASM51 is a "string replacement" facility. Macros allow frequently used
sections of code be defined once using a simple mnemonic and used anywhere in the program by inserting the
mnemonic. Programming using macros is a powerful extension of the techniques described thus far. Macros can
be defined anywhere in a source program and subsequently used like any other instruction. The syntax for macro
definition is

%*DEFINE (call_pattern) (macro_body)

Once defined, the call pattern is like a mnemonic; it may be used like any assembly language instruction by
placing it in the mnemonic field of a program. Macros are made distinct from "real" instructions by preceding
them with a percent sign, "%". When the source program is assembled, everything within the macro-body, on
a character-by-character basis, is substituted for the call-pattern. The mystique of macros is largely unfounded.
They provide a simple means for replacing cumbersome instruction patterns with primitive, easy-to-remember
mnemonics. The substitution, we reiterate, is on a character-by-character basis—nothing more, nothing less.

For example, if the following macro definition appears at the beginning of a source file,

%*DEFINE (PUSH_DPTR)
(PUSH DPH
PUSH DPL
)

then the statement
%PUSH_DPTR
will appear in the .LST file as

PUSH DPH
PUSH DPL

The example above is a typical macro. Since the 8051 stack instructions operate only on direct addresses,
pushing the data pointer requires two PUSH instructions. A similar macro can be created to POP the data pointer.
There are several distinct advantages in using macros:

A source program using macros is more readable, since the macro mnemonic is generally more indicative
of the intended operation than the equivalent assembler instructions.

* The source program is shorter and requires less typing.

* Using macros reduces bugs

» Using macros frees the programmer from dealing with low-level details.

The last two points above are related. Once a macro is written and debugged, it is used freely without the worry
of bugs. In the PUSH DPTR example above, if PUSH and POP instructions are used rather than push and pop
macros, the programmer may inadvertently reverse the order of the pushes or pops. (Was it the high-byte or low-
byte that was pushed first?) This would create a bug. Using macros, however, the details are worked out once—
when the macro is written—and the macro is used freely thereafter, without the worry of bugs.

Since the replacement is on a character-by-character basis, the macro definition should be carefully
constructed with carriage returns, tabs, ect., to ensure proper alignment of the macro statements with the rest of
the assembly language program. Some trial and error is required.

There are advanced features of ASM51's macro-processing facility that allow for parameter passing, local
labels, repeat operations, assembly flow control, and so on. These are discussed below.

STC MCU Limited. website: www.STCMCU.com 409

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966
Parameter Passing

A macro with parameters passed from the main program has the following modified format:

%*DEFINE (macro_name (parameter list)) (macro_body)
For example, if the following macro is defined,
%*DEFINE (CMPA# (VALUE))
(CINE A, #%VALUE, $ +3
)

then the macro call
%CMPA# (20H)

will expand to the following instruction in the .LST file:
CINE A,#20H,$+3

Although the 8051 does not have a "compare accumulator” instruction, one is easily created using the CINE
instruction with "$+3" (the next instruction) as the destination for the conditional jump. The CMPA# mnemonic
may be easier to remember for many programmers. Besides, use of the macro unburdens the programmer from
remembering notational details, such as "$+3."

Let's develop another example. It would be nice if the 8051 had instructions such as

JUMP IF ACCUMULATOR GREATER THAN X

JUMP IF ACCUMULATOR GREATER THAN OR EQUAL TO X
JUMP IF ACCUMULATOR LESS THAN X

JUMP IF ACCUMULATOR LESS THAN OR EQUAL TO X

but it does not. These operations can be created using CINE followed by JC or JNC, but the details are tricky.
Suppose, for example, it is desired to jump to the label GREATER _THAN if the accumulator contains an ASCII
code greater than "Z" (5AH). The following instruction sequence would work:

CINE A, #5BH, $-3

INC GREATER THAN
The CJNE instruction subtracts 5BH (i.e., "Z" + 1) from the content of A and sets or clears the carry flag
accordingly. CINE leaves C=1 for accumulator values 00H up to and including SAH. (Note: 5SAH-5BH<O0,
therefore C=1; but SBH-5BH=0, therefore C=0.) Jumping to GREATER_THAN on the condition "not carry"
correctly jumps for accumulator values 5BH, SCH, 5DH, and so on, up to FFH. Once details such as these are
worked out, they can be simplified by inventing an appropriate mnemonic, defining a macro, and using the macro
instead of the corresponding instruction sequence. Here's the definition for a "jump if greater than" macro:

%*DEFINE (JGT (VALUE, LABEL))
(CINE A, #%VALUE+1, $+3 :JGT
JNC %LABEL
)

To test if the accumulator contains an ASCII code greater than "Z," as just discussed,the macro would be called as
%JGT ('Z', GREATER THAN)
ASMS51 would expand this into

CINE A, #5BH, $+3 JGT
JNC GREATER THAN

The JGT macro is an excellent example of a relevant and powerful use of macros. By using macros, the
programmer benefits by using a meaningful mnemonic and avoiding messy and potentially bug-ridden details.

410 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
Local Labels
Local labels may be used within a macro using the following format:
%*DEFINE (macro name [(parameter list)])
[LOCAL list_of local labels] (macro body)
For example, the following macro definition

%*DEFINE (DEC_DPTR) LOCAL SKIP
(DEC DPL :DECREMENT DATA POINTER
MOV A, DPL
CINE A, #0FFH, %SKIP
DEC DPL
%SKIP:)

would be called as
%DEC DPTR
and would be expanded by ASM51 into

DEC DPL ;DECREMENT DATA POINTER
MOV A,DPL

CINE A, #0FFH, SKIP0OO

DEC DPH

SKIP0O:

Note that a local label generally will not conflict with the same label used elsewhere in the source program, since
ASMS51 appends a numeric code to the local label when the macro is expanded. Furthermore, the next use of the
same local label receives the next numeric code, and so on.

The macro above has a potential "side effect." The accumulator is used as a temporary holding place for
DPL. If the macro is used within a section of code that uses A for another purpose, the value in A would be lost.
This side effect probably represents a bug in the program. The macro definition could guard against this by saving
A on the stack. Here's an alternate definition for the DEC_DPTR macro:

%*DEFINE (DEC _DPTR) LOCAL SKIP
(PUSHACC

DEC DPL ;DECREMENT DATA POINTER
MOV A,DPL
CINE A, #0FFH, %SKIP
DEC DPH

%SKIP: POP ACC
)

Repeat Operations

This is one of several built-in (predefined) macros. The format is
%REPEAT (expression) (text)
For example, to fill a block of memory with 100 NOP instructions,

%REPEAT (100)
(NOP
)

STC MCU Limited. website: www.STCMCU.com 411

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Control Flow Operations
The conditional assembly of section of code is provided by ASM51's control flow macro definition. The format is

%IF (expression) THEN (balanced text)
[ELSE (balanced text)] FI

For example,

INTRENAL EQU 1 ;1 =8051 SERIAL I/0 DRIVERS
;0 = 8251 SERIAL I/0 DRIVERS

%IF (INTERNAL) THEN

(INCHAR: . ;8051 DRIVERS
OUTCHR:

) ELSE
(INCHAR: . ;8251 DRIVERS
OUTCHR:

)

In this example, the symbol INTERNAL is given the value 1 to select I/O subroutines for the 8051's serial port,
or the value 0 to select I/O subroutines for an external UART, in this case the 8251. The IF macro causes ASM51
to assemble one set of drivers and skip over the other. Elsewhere in the program, the INCHAR and OUTCHR
subroutines are used without consideration for the particular hardware configuration. As long as the program as
assembled with the correct value for INTERNAL, the correct subroutine is executed.

412 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Appendix B: 8051 C Programming
ADVANTAGES AND DISADVANTAGES OF 8051 C

The advantages of programming the 8051 in C as compared to assembly are:

» Offers all the benefits of high-level, structured programming languages such as C, including the ease of
writing subroutines

» Often relieves the programmer of the hardware details that the complier handles on behalf of the
programmer

 Easier to write, especially for large and complex programs

* Produces more readable program source codes

Nevertheless, 8051 C, being very similar to the conventional C language, also suffers from the following
disadvantages:

» Processes the disadvantages of high-level, structured programming languages.
* Generally generates larger machine codes
* Programmer has less control and less ability to directly interact with hardware

To compare between 8051 C and assembly language, consider the solutions to the Example—Write a program
using Timer 0 to create a 1KHz square wave on P1.0.
A solution written below in 8051 C language:

sbit portbit = P170; /*Use variable portbit to refer to P1.0*/
main ()
{
TMOD = 1;
while (1)
{
THO = OxFE;
TLO = 0xC;
TRO=1;
while (TFO !=1);
TRO=0;
TFO0 =0;
portbit = !(P1.70);
b
H
A solution written below in assembly language:
ORG 8100H
MOV TMOD, #01H ;16-bit timer mode
LOOP: MOV THO, #OFEH ;-500 (high byte)
MOV TLO, #0CH ;-500 (low byte)
SETB TRO ;start timer
WAIT: JNB TFO, WAIT ;wait for overflow
CLR TRO ;stop timer
CLR TFO ;clear timer overflow flag
CPL P1.0 ;toggle port bit
SIMP LOOP ;repeat
END

STC MCU Limited. website: www.STCMCU.com 413

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Notice that both the assembly and C language solutions for the above example require almost the same number
of lines. However, the difference lies in the readability of these programs. The C version seems more human than
assembly, and is hence more readable. This often helps facilitate the human programmer's efforts to write even
very complex programs. The assembly language version is more closely related to the machine code, and though
less readable, often results in more compact machine code. As with this example, the resultant machine code from
the assembly version takes 83 bytes while that of the C version requires 149 bytes, an increase of 79.5%!

The human programmer's choice of either high-level C language or assembly language for talking to the
8051, whose language is machine language, presents an interesting picture, as shown in following figure.

Human language » C (high-level) language
Eg. English, Malay, Chinese —— Eg. for (x=0; x<9; x++)...
Y
Complier
| Assembly language

A

Eg. MOV, ADD, SUB

Machine language
Eg. 10011101 0101010101 | Assembler 4—|

Conversion between human, high-level, assembly, and machine language
8051 C COMPILERS

We saw in the above figure that a complier is needed to convert programs written in 8051 C language into
machine language, just as an assembler is needed in the case of programs written in assembly language. A
complier basically acts just like an assembler, except that it is more complex since the difference between C and
machine language is far greater than that between assembly and machine language. Hence the complier faces a
greater task to bridge that difference.

Currently, there exist various 8051 C complier, which offer almost similar functions. All our examples
and programs have been compiled and tested with Keil's p Vision 2 IDE by Keil Software, an integrated 8051
program development envrionment that includes its C51 cross compiler for C. A cross compiler is a compiler that
normally runs on a platform such as IBM compatible PCs but is meant to compile programs into codes to be run
on other platforms such as the 8051.

DATA TYPES

8051 C is very much like the conventional C language, except that several extensions and adaptations have been
made to make it suitable for the 8051 programming environment. The first concern for the 8051 C programmer is
the data types. Recall that a data type is something we use to store data. Readers will be familiar with the basic C
data types such as int, char, and float, which are used to create variables to store integers, characters, or floating-
points. In 8051 C, all the basic C data types are supported, plus a few additional data types meant to be used
specifically with the 8051.

The following table gives a list of the common data types used in 8051 C. The ones in bold are the specific
8051 extensions. The data type bit can be used to declare variables that reside in the 8051's bit-addressable
locations (namely byte locations 20H to 2FH or bit locations 00H to 7FH). Obviously, these bit variables can only
store bit values of either 0 or 1. As an example, the following C statement:

bit flag=0;
declares a bit variable called flag and initializes it to 0.

414 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Data types used in 8051 C language

Data Type Bits | Bytes |Value Range

bit 1 0to 1

signed char 8 1 |-128 to +127

unsigned char 8 1 |0to 255

enum 16 2 |-32768 to +32767

signed short 16 2 [-32768 to +32767

unsigned short 16 2 |0to 65535

signed int 16 2 |-32768 to +32767

unsigned int 16 2 |0to 65535

signed long 32 4 |-2,147,483,648 to +2,147,483,647
unsigned long 32 4 |0t04,294,967,295

float 32 4 |£1.175494E-38 to +3.402823E+38
sbit 1 0to 1

sfr 8 1 |0to255

sfr16 16 2 |0to 65535

The data type sbit is somewhat similar to the bit data type, except that it is normally used to declare 1-bit
variables that reside in special function registes (SFRs). For example:
sbit P=0xDO0;
declares the sbit variable P and specifies that it refers to bit address DOH, which is really the LSB of the PSW
SFR. Notice the difference here in the usage of the assignment ("=") operator. In the context of sbit declarations,
it indicatess what address the sbit variable resides in, while in bit declarations, it is used to specify the initial
value of the bit variable.

Besides directly assigning a bit address to an sbit variable, we could also use a previously defined sfr
variable as the base address and assign our sbit variable to refer to a certain bit within that sfr. For example:

sfr PSW = 0xDO0;
sbit P=PSW"0;
This declares an sfr variable called PSW that refers to the byte address DOH and then uses it as the base address
to refer to its LSB (bit 0). This is then assigned to an sbit variable, P. For this purpose, the carat symbol (") is used
to specify bit position 0 of the PSW.
A third alternative uses a constant byte address as the base address within which a certain bit is referred. As
an illustration, the previous two statements can be replaced with the following:

sbit P=0xD0 " 0;
Meanwhile, the sfr data type is used to declare byte (8-bit) variables that are associated with SFRs. The
statement:
sfr 1IE = 0xAS;

declares an sfr variable IE that resides at byte address ASH. Recall that this address is where the Interrupt Enable
(IE) SFR is located; therefore, the sfr data type is just a means to enable us to assign names for SFRs so that it is
easier to remember.

The sfr16 data type is very similar to sfr but, while the sfr data type is used for 8-bit SFRs, sfr16 is used for
16-bit SFRs. For example, the following statement:

sfr16 DPTR = 0x82;

STC MCU Limited. website: www.STCMCU.com 415

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

declares a 16-bit variable DPTR whose lower-byte address is at 82H. Checking through the 8051 architecture,
we find that this is the address of the DPL SFR, so again, the sfr16 data type makes it easier for us to refer to
the SFRs by name rather than address. There's just one thing left to mention. When declaring sbit, sfr, or sfr16
variables, remember to do so outside main, otherwise you will get an error.

In actual fact though, all the SFRs in the 8051, including the individual flag, status, and control bits in the
bit-addressable SFRs have already been declared in an include file, called reg51.h, which comes packaged with
most 8051 C compilers. By using reg51.h, we can refer for instance to the interrupt enable register as simply IE
rather than having to specify the address A8H, and to the data pointer as DPTR rather than 82H. All this makes
8051 C programs more human-readable and manageable. The contents of reg51.h are listed below.

/*
REG51.H
Header file for generic 8051 microcontroller.

*/
/* BYTE Register */ sbit 1IE1 = 0x8B;
sfr PO = 0x80; sbit IT1 0x8A;
sfr P1 = 0x90; sbit 1EO 0x89;
sfr P2 = 0xAO; sbit 1TO = 0x88;
sfr P3 = 0xBO; /* IE */
sfr PSW = 0xDO0; sbit EA = 0xAF;
sfr ACC = 0xEO; sbit ES 0xAC;
sfr B = 0xFO; sbit ET1 0xAB;
sfr SP = 0x81; sbit EX1 0xAA;
sfr DPL = 0x82; sbit ETO 0xA9;
sfr DPH = 0x83; sbit EXO0 = 0xAS,;
sfr PCON = 0x87; /* 1P */
sfr TCON = 0x88; sbit PS = 0xBC;
sfr TMOD = 0x89; sbit PT1 0xBB;
sfr TLO = 0x8A; sbit PX1 0xBA;
sfr TL1 = 0x8B; sbit PTO 0xB9;
sfr THO = 0x8C; sbit PX0 = 0xBS;
sfr TH1 = 0x8D; /* P3 */
sfr 1IE = 0xAS,; sbit RD = 0xB7;
sfr 1P = 0xBS; sbit WR 0xB6;
sfr SCON = 0x98; sbit T1 = 0xBS5;
sfr SBUF = 0x99; sbit TO = 0xB4;
/* BIT Register */ sbit INT1 0xB3;
/* PSW */ sbit INTO 0xB2;
sbit CY = 0xD7; sbit TXD 0xB1;
sbit AC = 0xDe6; sbit RXD = 0xBO0;
sbit FO = 0xDS5; /* SCON */
sbit RS1 = 0xD4; sbit SMO = 0x9F;
sbit RSO = 0xD3; sbit SM1 0x9E;
sbit ov = 0xD2; sbit SM2 0x9D;
sbit P = 0xDO; sbit REN 0x9C;
/* TCON */ sbit TBS8 0x9B;
sbit TF1 = 0x8F; sbit RB8 0x9A;
sbit TR1 = 0x8E; sbit TI 0x99;
sbit TFO = 0x8D; sbit RI = 0x98;
sbit TRO = 0x8C;

416 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
MEMORY TYPES AND MODELS

The 8051 has various types of memory space, including internal and external code and data memory. When
declaring variables, it is hence reasonable to wonder in which type of memory those variables would reside. For
this purpose, several memory type specifiers are available for use, as shown in following table.

Memory types used in 8051 C language
Memory Type Description (Size)
code Code memory (64 Kbytes)
data Directly addressable internal data memory (128 bytes)
idata Indirectly addressable internal data memory (256 bytes)
bdata Bit-addressable internal data memory (16 bytes)
xdata External data memory (64 Kbytes)
pdata Paged external data memory (256 bytes)

The first memory type specifier given in above table is code. This is used to specify that a variable is to reside in
code memory, which has a range of up to 64 Kbytes. For example:

char code errormsg[| ="An error occurred" ;

declares a char array called errormsg that resides in code memory.

If you want to put a variable into data memory, then use either of the remaining five data memory specifiers
in above table. Though the choice rests on you, bear in mind that each type of data memory affect the speed of
access and the size of available data memory. For instance, consider the following declarations:

signed int data numl;
bit bdata numbit;
unsigned int xdata num2;

The first statement creates a signed int variable num1 that resides in inernal data memory (00H to 7FH). The next
line declares a bit variable numbit that is to reside in the bit-addressable memory locations (byte addresses 20H
to 2FH), also known as bdata. Finally, the last line declares an unsigned int variable called num?2 that resides in
external data memory, xdata. Having a variable located in the directly addressable internal data memory speeds
up access considerably; hence, for programs that are time-critical, the variables should be of type data. For other
variants such as 8052 with internal data memory up to 256 bytes, the idata specifier may be used. Note however
that this is slower than data since it must use indirect addressing. Meanwhile, if you would rather have your
variables reside in external memory, you have the choice of declaring them as pdata or xdata. A variable declared
to be in pdata resides in the first 256 bytes (a page) of external memory, while if more storage is required, xdata
should be used, which allows for accessing up to 64 Kbytes of external data memory.

What if when declaring a variable you forget to explicitly specify what type of memory it should reside in, or
you wish that all variables are assigned a default memory type without having to specify them one by one? In this
case, we make use of memory models. The following table lists the various memory models that you can use.

Memory models used in 8051 C language
Memory Model Description
Small Variables default to the internal data memory (data)
Compact Variables default to the first 256 bytes of external data memory (pdata)
Large Variables default to external data memory (xdata)

STC MCU Limited. website: www.STCMCU.com 417

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

A program is explicitly selected to be in a certain memory model by using the C directive, #pragma. Otherwise,
the default memory model is small. It is recommended that programs use the small memory model as it allows for
the fastest possible access by defaulting all variables to reside in internal data memory.

The compact memory model causes all variables to default to the first page of external data memory while
the large memory model causes all variables to default to the full external data memory range of up to 64 Kbytes.

ARRAYS

Often, a group of variables used to store data of the same type need to be grouped together for better readability.
For example, the ASCII table for decimal digits would be as shown below.

ASCII table for decimal digits

Decimal Digit ASCII Code In Hex
0 30H
31H
32H
33H
34H
35H
36H
37H
38H
39H

Nl Kool BN Ho) N (UL NN RUSH B (O N I

To store such a table in an 8051 C program, an array could be used. An array is a group of variables of the same
data type, all of which could be accessed by using the name of the arrary along with an appropriate index.
The array to store the decimal ASCII table is:

int table [10] =
{0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39};

Notice that all the elements of an array are separated by commas. To access an individul element, an index
starting from 0 is used. For instance, table[0] refers to the first element while table[9] refers to the last element in
this ASCII table.

STRUCTURES

Sometime it is also desired that variables of different data types but which are related to each other in some way
be grouped together. For example, the name, age, and date of birth of a person would be stored in different types
of variables, but all refer to the person's personal details. In such a case, a structure can be declared. A structure is
a group of related variables that could be of different data types. Such a structure is declared by:

struct person {
char name;
int age;
long DOB;
15
Once such a structure has been declared, it can be used like a data type specifier to create structure variables that
have the member's name, age, and DOB. For example:

struct person grace = {"Grace", 22, 01311980};

418 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

would create a structure variable grace to store the name, age, and data of birth of a person called Grace. Then in
order to access the specific members within the person structure variable, use the variable name followed by the
dot operator (.) and the member name. Therefore, grace.name, grace.age, grace.DOB would refer to Grace's name,
age, and data of birth, respectively.

POINTERS

When programming the 8051 in assembly, sometimes register such as RO, R1, and DPTR are used to store
the addresses of some data in a certain memory location. When data is accessed via these registers, indirect
addressing is used. In this case, we say that RO, R1, or DPTR are used to point to the data, so they are essentially
pointers.

Correspondingly in C, indirect access of data can be done through specially defined pointer variables. Point-
ers are simply just special types of variables, but whereas normal variables are used to directly store data, pointer
variables are used to store the addresses of the data. Just bear in mind that whether you use normal variables or
pointer variables, you still get to access the data in the end. It is just whether you go directly to where it is stored
and get the data, as in the case of normal variables, or first consult a directory to check the location of that data
before going there to get it, as in the case of pointer variables.

Declaring a pointer follows the format:

data type *pointer name;

where
data_type refers to which type of data that the pointer is pointing to
* denotes that this is a pointer variable
pointer_name is the name of the pointer

As an example, the following declarations:

int * numPtr
int num;
numPtr = #

first declares a pointer variable called numPtr that will be used to point to data of type int. The second declaration
declares a normal variable and is put there for comparison. The third line assigns the address of the num variable
to the numPtr pointer. The address of any variable can be obtained by using the address operator, &, as is used in
this example. Bear in mind that once assigned, the numPtr pointer contains the address of the num variable, not
the value of its data.

The above example could also be rewritten such that the pointer is straightaway initialized with an address
when it is first declared:

int num;
int * numPtr = #

In order to further illustrate the difference between normal variables and pointer variables, consider the
following, which is not a full C program but simply a fragment to illustrate our point:

int num=7;

int * numPtr = #
printf ("%d\n", num);
printf ("%d\n", numPtr);
printf ("%d\n", &num);
printf ("%d\n", *numPtr);

STC MCU Limited. website: www.STCMCU.com 419

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

The first line declare a normal variable, num, which is initialized to contain the data 7. Next, a pointer variable,
numPtr, is declared, which is initialized to point to the address of num. The next four lines use the printf()
function, which causes some data to be printed to some display terminal connected to the serial port. The first
such line displays the contents of the num variable, which is in this case the value 7. The next displays the
contents of the numPtr pointer, which is really some weird-looking number that is the address of the num variable.
The third such line also displays the addresss of the num variable because the address operator is used to obtain
num's address. The last line displays the actual data to which the numPtr pointer is pointing, which is 7. The *
symbol is called the indirection operator, and when used with a pointer, indirectly obtains the data whose address
is pointed to by the pointer. Therefore, the output display on the terminal would show:

7

13452 (or some other weird-looking number)

13452 (or some other weird-looking number)

7

A Pointer's Memory Type

Recall that pointers are also variables, so the question arises where they should be stored. When declaring
pointers, we can specify different types of memory areas that these pointers should be in, for example:

int * xdata numPtr = & num;
This is the same as our previous pointer examples. We declare a pointer numPtr, which points to data of type int
stored in the num variable. The difference here is the use of the memory type specifier xdata after the *. This is
specifies that pointer numPtr should reside in external data memory (xdata), and we say that the pointer's memory
type is xdata.

Typed Pointers

We can go even further when declaring pointers. Consider the example:
int data * xdata numPtr = #

The above statement declares the same pointer numPtr to reside in external data memory (xdata), and this pointer
points to data of type int that is itself stored in the variable num in internal data memory (data). The memory type
specifier, data, before the * specifies the data memory type while the memory type specifier, xdata, after the *
specifies the pointer memory type.

Pointer declarations where the data memory types are explicitly specified are called typed pointers. Typed
pointers have the property that you specify in your code where the data pointed by pointers should reside. The
size of typed pointers depends on the data memory type and could be one or two bytes.

Untyped Pointers

When we do not explicitly state the data memory type when declaring pointers, we get untyped pointers, which
are generic pointers that can point to data residing in any type of memory. Untyped pointers have the advantage
that they can be used to point to any data independent of the type of memory in which the data is stored. All
untyped pointers consist of 3 bytes, and are hence larger than typed pointers. Untyped pointers are also generally
slower because the data memory type is not determined or known until the complied program is run at runtime.
The first byte of untyped pointers refers to the data memory type, which is simply a number according to the
following table. The second and third bytes are,respectively,the higher-order and lower-order bytes of the address
being pointed to.
An untyped pointer is declared just like normal C, where:
int * xdata numPtr = #
does not explicitly specify the memory type of the data pointed to by the pointer. In this case, we are using
untyped pointers.

420 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Data memory type values stored in first byte of untyped pointers
Value Data Memory Type

1 idata

2 xdata

3 pdata

4 data/bdata

5 code

FUNCTIONS

In programming the 8051 in assembly, we learnt the advantages of using subroutines to group together common
and frequently used instructions. The same concept appears in 8051 C, but instead of calling them subroutines, we
call them functions. As in conventional C, a function must be declared and defined. A function definition includes
a list of the number and types of inputs, and the type of the output (return type), puls a description of the internal
contents, or what is to be done within that function.

The format of a typical function definition is as follows:

return_type function name (arguments) [memory] [reentrant] [interrupt] [using]

{
¥

where
return_type refers to the data type of the return (output) value
function name is any name that you wish to call the function as
arguments is the list of the type and number of input (argument) values
memory refers to an explicit memory model (small, compact or large)
reentrant refers to whether the function is reentrant (recursive)
interrupt indicates that the function is acctually an ISR
using explicitly specifies which register bank to use

Consider a typical example, a function to calculate the sum of two numbers:

int sum (int a, int b)

{
H

This function is called sum and takes in two arguments, both of type int. The return type is also int, meaning that
the output (return value) would be an int. Within the body of the function, delimited by braces, we see that the
return value is basically the sum of the two agruments. In our example above, we omitted explicitly specifying the
options: memory, reentrant, interrupt, and using. This means that the arguments passed to the function would be
using the default small memory model, meaning that they would be stored in internal data memory. This function
is also by default non-recursive and a normal function, not an ISR. Meanwhile, the default register bank is bank 0.

return a+b;

Parameter Passing

In 8051 C, parameters are passed to and from functions and used as function arguments (inputs). Nevertheless, the
technical details of where and how these parameters are stored are transparent to the programmer, who does not
need to worry about these techinalities. In 8051 C, parameters are passed through the register or through memory.
Passing parameters through registers is faster and is the default way in which things are done. The registers used
and their purpose are described in more detail below.

STC MCU Limited. website: www.STCMCU.com 421

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

Registers used in parameter passing

Number of Argument |Char / 1-Byte Pointer| INT / 2-Byte Pointer | Long/Float | Generic Pointer
1 R7 R6 & R7 R4-R7 R1-R3
2 R5 R4 &RS5 R4-R7
3 R3 R2 & R3

Since there are only eight registers in the 8051, there may be situations where we do not have enough regist-
ers for parameter passing. When this happens, the remaining parameters can be passed through fixed memory
loacations. To specify that all parameters will be passed via memory, the NOREGPARMSs control directive is
used. To specify the reverse, use the REGPARMs control directive.

Return Values

Unlike parameters, which can be passed by using either registers or memory locations, output values must be
returned from functions via registers. The following table shows the registers used in returning different types of

values from functions.

Registers used in returning values from functions

Return Type

Register

Description

bit

Carry Flag (C)

char/unsigned char/1-byte pointer

R7

int/unsigned int/2-byte pointer |[R6 & R7 MSB in R6, LSB in R7

long/unsigned long R4-R7 MSB in R4, LSB in R7

float R4-R7 32-bit IEEE format

generic pointer RI-R3 Memory type in R3, MSB in R2, LSB in R1

422

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922809991

Tel:86-755-82948412

Fax:86-755-82905966

Appendix C: STC12C5Axx series Electrical Characteristics

Absolute Maximum Ratings

Parameter Symbol Min Max Unit
Srotage temperature TST -55 +125 T
Operating temperature (I) TA -40 +85 T
Operating temperature (C) TA 0 +70 T
DC power supply (5V) VDD - VSS -0.3 +5.5 \%
DC power supply (3V) VDD - VSS -0.3 +3.6 \%
Voltage on any pin - -0.3 VCC+0.3 \Y
DC Specification (5V MCU)
Sym | Parameter Sp.ec1ﬁcat1on — Test Condition
Min. | Typ Max. | Unit
Voo Operating Voltage 33 5.0 5.5 \
Irp Power Down Current - <0.1 | - uA 5V
| Idle Current - 3.0 - mA | 5V
Iee Operating Current - 4 20 mA | 5V
Vi Input Low (PO,P1,P2,P3) - - 0.8 \% 5V
Vi Input High (P0,P1,P2,P3) 2.0 - - \% 5V
Vi, | Input High (RESET) 22 - - \% 5V
Towus Sink Current for output low (P0,P1,P2,P3) - 20 - mA | 5SV@Vpin=0.45V
Tou (SQOE:;iir_lfuf;i;ent for output high (P0,P1,P2,P3) 150 230) UA sy
Lo | g o o (ORI |y | svavmneaay
Iy Logic 0 input current (PO,P1,P2,P3) - - 50 uA Vpin=0V
I Logic 1 to 0 transition current (P0,P1,P2,P3) 100 270 600 uA Vpin=2.0V
STC MCU Limited. website: www.STCMCU.com 423

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

DC Specification (3V MCU)

Specification i

Sym Parameter - — Test Condition
Min. | Typ | Max. | Unit

Voo Operating Voltage 2.2 33 3.6 A%

Irp Power Down Current - <0.1 | - uA 3.3V

IipL Idle Current - 2.0 - mA | 3.3V

Iee Operating Current - 4 10 mA | 3.3V

Vi Input Low (PO,P1,P2,P3) - - 0.8 \% 3.3V

Vi Input High (P0,P1,P2,P3) 2.0 - - v 3.3V

Vi Input High (RESET) 2.2 - - \Y 3.3V

Tou Sink Current for output low (P0,P1,P2,P3) - 20 - mA | 3.3V@Vpin=0.45V

Tou, (S(())E;cslir_lfu?;g)ent for output high (P0,P1,P2,P3) 40 70) UA 33V

Tous (Sl?llllsrlclzflll)i 1(lj)urrent for output high (P0,P1,P2,P3) | 20 | mA | 33V

Iy Logic 0 input current (P0,P1,P2,P3) - 8 50 uA Vpin=0V

I Logic 1 to 0 transition current (P0O,P1,P2,P3) - 110 | 600 | uA | Vpin=2.0V

424 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Appendix D: Program for indirect addressing inner 256B RAM

e */
;/*¥ --- STC MCU International Limited */
;/¥ === STC 1T Series MCU the inner 256B normal RAM (indirect addressing) Demo ----------- */
;/* --- Mobile: (86)13922809991 */
;/* --- Fax: 86-755-82905966 */
3/ --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */
e */

TEST CONST EQU SAH
;TEST RAM EQU 03H
ORG 0000H
LIMP INITIAL

ORG 0050H
INITIAL:

MOV RO, #253

MOV RI, #3H
TEST ALL RAM:

MOV R2, #OFFH
TEST ONE RAM:

MOV A, R2

MOV @R1, A

CLR A

MOV A, @R1

CINE A, 2H, ERROR_DISPLAY

DINZ R2, TEST ONE RAM

INC R1

DINZ RO, TEST ALL RAM
OK DISPLAY:

MOV PI, #11111110B
Waitl:

SIMP Waitl
ERROR_DISPLAY:

MOV A, R1

MOV PI, A
Wait2:

SIMP Wait2

END

STC MCU Limited. website: www.STCMCU.com 425

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

Appendix E: Using Serial port expand I/O interface

STC12C5A608S2 series MCU serial port mode0 can be used for expand IO if UART is free in your application.
UART Mode0 is a synchronous shift register, the baudrate is fixed at fosc/12, RXD pin (P3.0) is the data I/O port,
and TXD pin (P3.1) is clock output port, data width is 8 bits, always sent / received the lowest bit at first.

(1) Using 74HC165 expand parallel input ports
Please refer to the following circuit which using 2 pcs 74HC165 to expand 16 input I/Os

12Cxx 6l5l4l 3l14l13l12l11l Gl sl 4l 3l14l13l12l11l
HGFEDTC CBA HGFEDTG CTB A
9 10
P3.0 |= < 9 10
Qu 74HC165 SIN® < Qu 74HC165 SIN =
P3.1 ;
] _ 7|—
Qi g/C CcP Qs Cp
P1.0 [WRE| Y Y 16] N 7 W Y Y 6
‘| 2L v |_l_|>
= _h'm cc = b o Vee
N T\

74HC165 is a 8-bit parallel input shift register, when S/L (Shift/Load) pin is falling to low level, the parallel port
data is read into internal register, and now, if S/L is raising to high and ClockDisable pin (15 pin) is low level,
then clock signal from CP pin is enable. At this time register data will be output from the Dh pin (9 pin) with the
clock input.

MOV R7,#05H ;read 5 groups data
MOV RO,#20H ;set buffer address
START: CLR PI1.0 ;S/L =0, load port data
SETB P1.0 ;S/L =1, lock data and enable clock
MOV R1,#02H ;2 bytes per group
RXDAT:MOV SCON,#00010000B ;set serial as mode 0 and enable receive data
WAIT: JNB RIL,WAIT ;wait for receive complete
CLR RI ;clear receive complete flag
MOV A,SBUF ;read data to ACC
MOV @R0,A ;save data to buffer
INCRO ;modify buffer ptr
DINZ R1,RXDAT ;read next byte
DINZ R7,START ;read next group

426 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

(2) Using 74HC164 expand parallel output ports
Please refer to the following circuit which using 2 pcs 74HC164 to expand 16 output I/Os

12Cxx 3T 4T 5T 5T 10T IIT 12T 13 3T 4T ST 6T 10T 11T 12T IST
1, Qa Qs Q¢ Qp Qi Qr Qs Qu Q, Qs Q¢ Qp Qr Qr Qs Qy

2
P3.0 > AB '31AB
14 74HCl64 %14 ’ T4HC164
P31 104 ; Vce 104 Vee
Gnd 7
= CLR cP i_ o g CP
P1.0 oA Y) ok Yy

/TN

When serial port is working in MODEQO, the serial data is input/output from RXD(P3.0) pin and serial clock is
output from TXD(P3.1). Serial data is always starting transmission from the lowest bit.

START: MOV R7,#02H soutput 2 bytes data

MOV RO,#30H ;set buffer address
MOV SCON,#00000000B ;set serial as mode 0
SEND: MOV A,@R0 ;read data from buffer
MOV SBUF,A ;start send data
WAIT: JNB TL,WAIT ;wait for send complete
CLRTI ;clear send complete flag
INC RO ;modify buffer ptr
DJNZ R7,SEND ;send next data

STC MCU Limited. website: www.STCMCU.com 427

www.STCMCU.com

Mobile:(86)13922809991

Tel:086-755-82948412

Appendix F:

cl
10uF

R1
10K

5.6K R2

1

1
g
7~

al —]| ©
= = = N (=} =t o
3134 32 33 3
|]] —=| ©
o w| | o] o] | F| =] | F] F] o =
51 G 6
/"’."’."!'—,Q“!DO,—'N el I
A EEsR
Segl3 7 Pl ° P04 39 |
Segld 8 L1 po.s |28
Seeld 9 115 Po.6 |21
10 Ipst po.7 |38
P3.0 EA 35—|vcc
=43 8051 pa |24
P.1 ALE|SS
P3.2 PSEN |32
2 s po7 |31 Sew3
s po6 130 See22
P3.5 a5 P25 |22 Sea2l
o ;E ;E ke o = = o
EExx>aaga g8 g
— —] A A] A A A A)
p— ol ~] o] N ©
= —f =] -] -]
3) 3) 3
n| | vl vl wn

Use STC MCU common I/O driving LCD Display

Fax:86-755-82905966

0 Com0
Soml 1| Coml
Segd 2 fgeo0
Segl 3 fqeol
Se@2 4 lgeqn
Seg3 5 Seg3
Segd 6 Segd

Segs 7 Segs

Segb 8 Seg6

Seg? 9 Seg?

Seg8 10 Seg8

Segd 11 Segd

Segl0 12 Seg10
Segll 13 Segll
Segl2 14 Segl2
Segl3 15 Segl3
Segl4 16 Segld
Segl5 17 Segls
Segl6 18 Segl6
Segl7 19 Segl?
Segl8 20 Segl8
Segl9 21 Segl9
Seg20 22 Seg20
Seg2l 23 Seg21
Seg22 24 Seg22
Seg23 25 Seg23
Com2

428

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

NAME LcdDriver
#include<reg52.h>

- 3fe sfe sk she sk sie s sk sk sk sk ste sfe she she sfe sk ske sk ske sk sk sk sk sk sk st st st sk she sk she sk ske sk sie s sk sk sk ste st sk ste st ske sk ske sk ske sk sieosie sk sk st st ste st sk st sl sk ske sk sk st sk sk sk sk skeoskeskeoskoskokoskosk
s

;the LCD is 1/3 duty and 1/3 bias; 3Com*24Seg; 9 display RAM;

; Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
;Com0: ComOData0: Seg7 Segb Seg5 Segd Seg3 Seg2 Segl Seg0
; ComODatal: Segl5 Segl4 Segl3 Segl2 Segll Segl0 Seg9 Seg8

; ComOData2: Seg23 Seg22 Seg2l Seg20 Segl9 Segl8 Segl7 Segl6
;Coml: ComlData0: Seg7 Segb Seg5 Segd Seg3 Seg2 Segl Seg0
; ComlDatal: Segl5 Segl4 Segl3 Segl2 Segll Segl0 Seg9 Seg8

; ComlData2: Seg23 Seg22 Seg2l Seg20 Segl9 Segl8 Segl7 Segl6
;Com2: Com2Data0: Seg7 Seg6b Seg5 Seg4 Seg3 Seg2 Segl Seg0
; Com2Datal: Segl5 Segl4 Segl3 Segl2 Segll Segl0 Seg9 Seg8

; Com2Data2: Seg23 Seg22 Seg?2l Seg20 Segl9 Segl8 Segl7 Segl6

sk sk ok sk ok ok o sk ok ok ok ok ok R sk ok ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok R sk ok ok R sk ok ok ok sk ok ok sk ok Rk sk sk ok sk ok ok sk ok ok sk sk ok sk ok Rk ok Rk ok
b

;Com0: P370,P3”1 when P30 =P3"1 =1 then Com0=VCC(=5V);
; P370=P3*1 =0 then Com0=GND(=0V);
; P370 =1, P3”1=0 then Com0=1/2 VCC;

;Coml: P372,P3”3 the same as the ComO
;:Com2: P374,P3"5 the same as the Com0

E

sbit SEG0O =P0"0
sbit SEG1 =P0"1
sbit SEG2 =P0"2
sbit SEG3 =P0"3
sbit SEG4 =P0"4
sbit SEGS =P0"5
sbit SEG6 =P0"6
sbit SEG7 =P0"7
sbit SEG8 =P170
sbit SEG9 =PI1"1
sbit SEG10 =P1"2

STC MCU Limited. website: www.STCMCU.com 429

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412

Fax:86-755-82905966

sbit SEG11 =P1"3
sbit SEG12 =P1"4
sbit SEG13 =PI1"5
sbit SEG14 =P1"6
sbit SEG15 =P1"7
sbit SEG16 =P2"0
sbit SEG17 =P2"1
sbit SEG18 =pP2"2
sbit SEG19 =P2"3
sbit SEG20 =P2"4
sbit SEG21 =P2"5
sbit SEG22 =P2"6
sbit SEG23 =P2"7

« 3 s sk sk sk sk sk sk sk sk sk ste st sk sk s sk sk sk sk sk sk ki sk sk ste sk sk sk sk sk sk sk sk sk sk sk sk sie sk st ste sk ki kot steoskeoskoskoskoskoskosk
H

;======[nterrupt
CSEG AT 0000H
LIMP start
CSEG AT 000BH
LIMP int_t0

; register

lcdd_bit SEGMENT BIT
RSEG lcdd bit
OutFlag: DBIT 1 ;the output display reverse flag
lcdd_data SEGMENT DATA
RSEG lcdd_data
ComOData0: DS
ComODatal: DS
Com(QOData2: DS
ComlData0: DS
ComlDatal: DS
ComlData2: DS
Com2Data0: DS
Com2Datal: DS
Com2Data2: DS
TimeS: DS

[e e e e e e

430 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

t0 int SEGMENT CODE

RSEG 0 int

USING 1
;***
;TimeO interrupt
;ths system crystalloid is 22.1184MHz
;the time to get the TimeO interrupr is 2.5mS
;the whole duty is 2.5mS*6=15mS, including reverse
ok sk sl ok sl ol kol ok sl ol ok sl ol ol ok ol ok ol o
int_t0:

ORL TLO,#00H

MOV THO,#0EEH

PUSH ACC
PUSH PSW
MOV PSW,#08H
ACALL OutData
POP PSW
POP ACC
RETI

;======SUB CODE

uart_sub SEGMENT CODE

RSEG uart_sub

USING 0
;**
;initial the display RAM data
;if want to display other,then you may add other data to this RAM
;Com0: ComOData0,ComODatal,ComOData2
;Coml: ComlData0,ComlDatal,ComlData2
;Com2: Com?2Data0,ComODatal,Com(OData2
;***
InitComData: ;it will display "11111111"

MOV Com0OData0, #24H

MOV ComODatal, #49H

MOV ComOData2, #92H

STC MCU Limited. website: www.STCMCU.com 431

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

MOV ComlData0, #92H
MOV ComlDatal, #24H
MOV ComlData2, #49H
MOV Com2Data0, #00H
MOV Com?2Datal, #00H
MOV Com2Data2, #00H
RET

s sk ok sk ok ok o sk ok ok ok ok ok ok R sk ok ok sk ok ok R sk ok ok R sk ok ok sk ok ok R sk ok ok R sk ok ok ok sk ok Rk sk sk ok sk sk ok sk ok Rk kR Rk ok Kk
9

;reverse the display data
« 3 sfe sfe she sk sie sk sk sk sk sk st sfe st she she she sk ske sk sk sk sk sk sk st st ste st she sk sk sk ske sk sie st sk sk sk sk ste sfe st sk she sk ske sk ske sk sk sk sk sk sk ste st skeoskeoskeoskoskokokoskokok
b

RetComData:
MOV RO, #ComOData0 ;get the first data address
MOV R7, #9
RetCom_0:
MOV A, @RO
CPL A
MOV @RO, A
INC RO
DINZ R7, RetCom_0
RET

Lok okokok sk ok ok sk ok ook sk ook sk ok ok sk okokok ok okok sk okok sk okokok kool sk okokok sk okokok kool ko okok ko oksk kR sk Rk kR K
2

;get the display Data and send to Output register
st sk sk ok st sk sk ok ot sk sk ok ot sk sk sk o s sk kot sk sk sk ok sk sk sk ok st sk sk ok st sk sk ok st sk sk sk st sk sk ok st sk sk ok ot sk sk ok sk sk sk ok ok sk ok sk sk skosk eskosk sk ok
9

OutData:

INC TimeS

MOV A, TimeS

MOV P3, #11010101B ;clear display,all Com are 1/2VCC and invalidate
CINE A, #01H, OutData 1 ;judge the duty

MOV PO, ComOData0

MOV Pl, ComODatal

MOV P2, ComOData2

INB OutFlag,OutData_00

MOV P3, #11010111B ;Com0 is work and is VCC
RET

432 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966
OutData_00:
MOV P3, #11010100B ;Com0 is work and is GND
RET
OutData_1:
CINE A, #02H,OutData 2
MOV PO, Com1Data0
MOV Pl, ComlDatal
MOV P2, ComlData2
INB OutFlag,OutData 10
MOV P3, #11011101B ;:Com1 is work and is VCC
RET
OutData_10:
MOV P3, #11010001B ;:Com1 is work and is GND
RET
OutData 2:
MOV PO, Com2Data0
MOV PI, Com?2Datal
MOV P2, Com2Data2
INB OutFlag,0OutData 20
MOV P3, #11110101B ;:Com?2 is work and is VCC
SIMP OutData 21
OutData_20:
MOV P3,#11000101B ;Com2 is work and is GND
OutData 21:
MOV TimeS, #00H
ACALL RetComData
CPL OutFlag
RET
;======Main Code

uart main SEGMENT CODE
RSEG uart_main
USING 0

STC MCU Limited.

website: www.STCMCU.com

433

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

start:

Main:

MOV
CLR

MOV
MOV
MOV
MOV
MOV

SP#40H
OutFlag
TimeS,#00H
TLO,#00H
THO,#0EEH
TMOD,#01H
IE.#82H

ACALL InitComData
SETB TRO

NOP
SIMP

END

Main

434

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Appendix G: LED driven by an I/O port and Key Scan

Vee
10K
P1.7 A Z I
K 1
o—]li
Vee
10K
P16 A % i
1K _|_o_|II

It can save a lot of I/O ports that STC12C5A60S2 MCU 1/O ports can used as the LED drivers and key detection
concurrently because of their feature which they can be set to the weak pull , the strong pull (push-pull) output,
only input (high impedance), open drain four modes.

When driving the LED, the I/O port should be set as strongly push-pull output, and the LED will be lighted when
the output is high.

When testing the keys, the I/O port should be set as weak pull input, and then reading the status of external ports
can test the keys.

STC MCU Limited. website: www.STCMCU.com 435

www.STCMCU.com Mobile:(86)13922809991

Tel:086-755-82948412

Fax:86-755-82905966

Appendix H: How to reduce the Length of Code using Keil C

Setting as shown below in Keil C can maximum reduce about 10K to the length of original code

1. Choose the "Options for Target" in "Project" menu
2. Choose the option "C51" in "Options for Target"

Options for Target ‘Target 1

F=x=)

Targetl Dutputl Listing@ | AS1 I ELS1 Locate | BELS1 Miscl Tebug I

— Preprocessor Symbols

ifine: Il

wlefine: I

— Code Optimization

evel!

=)
mphasis; IFavgr zite vI I_ Global Register Coloring

I_ Linker Code Pgcking (max. ATME ACALL)

9: Common Block Subroutines

[Don' t use absplute register accesses

|

Harnings I'Harninglevel Z LI

Bitz to round for float |3 vl
[¥ Interrupt wectors at a IUXUUUU

[Keep wariables in order
[# Enable ANSI integer promotion rul

Include I
Paths

|

Controls

_ |
Mise I /

Compiler
control
=tring

OPTIMIZE (9, 3IZE) BROYSE DEEBUG OBJECTEXTENWD

BLE

| Dafanlts

3. Code Optimization, 9 common block subroutines
4. Click "OK", compile the program once again.

436 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

Appendix I: Notes of STC12 series Replaced Traditional 8051

STC12C5Axx series MCU Timer0/Timer1/UART is fully compatible with the traditional 8051 MCU.
After power on reset, the default input clock source is the divider 12 of system clock frequency, and UART
baudrate generator is Timer 1. Add an independent Baud Rate Generator, saved the Timer2 in 8052 system.
MCU instruction execution speed is faster than the traditional 8051 MCU 8 ~ 12 times in the same working
environment,so software delay programs need to be adjusted.

ALE

Traditional 8051's ALE pin output signal on divide 6 the system clock frequency can be externally provided
clock, if disable ALE output in STC12C5Axx series system, you can get clock source from CLKOUTO0/P3.4,
CLKOUT1/P3.5, CLKOUT2/P1.0 or XTAL2 clock output. (Recommended a 200ohm series resistor to the
XTAL2 pin).

ALE pin is an disturbance source when traditional 8051's system clock frequency is too high. STC89xx
series MCU add ALEOFFF bit in AUXR register. While STC12C5Axx series MCU directly disable ALE
pin dividing 6 the system clock output, and can remove ALE disturbance thoroughly. Please compare the
following two registers.

AUXR register of STC89xx series

Mnemonic | Add Name Bit7 | Bit6 | Bit5 | Bit4 | Bir3 | Bit2 Bitl Bit0 Reset Value
AUXR 8EH | Auxiliary register 0 - - - - - - EXTRAM | ALEOFF | xxxx,xx00

AUXR register of STC12C5A60S2 series

Mnemonic| Add Name Bit7 | Bit6 Bit5 Bit4 Bir3 Bit2 Bitl Bit0 |Reset Value
AUXR |8EH |Auxiliary register| TOx12|T1x12|[UART MO0x6/|BRTR [S2SMOD2|BRTx12| EXTRAM |S1BRS| 0000,0000

PSEN
Traditional 8051 execute external program through the PSEN signal, STC12C5A608S2 series is system MCU
concept, integrated high-capacity internal program memory, do not need external program memory expansion
generally, so have no PSEN signal, PSEN pin can be used as GPIO.

General Qusi-Bidirectional I/0
Traditional 8051 access I/O (signal transition or read status) timing is 12 clocks, STC12C5A60S2 series
MCU is 4 clocks. When you need to read an external signal, if internal output a rising edge signal, for the
traditional 8051, this process is 12 clocks, you can read at once, but for STC12C5A60S2 series MCU, this
process is 4 clocks, when internal instructions is complete but external signal is not ready, so you must delay
1~2 nop operation.

P4 port
STC12C5A60S2 series MCU has integral P4 port (P4.0~P4.7), and location at address COH. No extended
external interrupt INT2/INT3. STC12C5A60S2 series is difference from STC89 series (STC89 series MCU
has half byte P4 port (P4.0~P4.3), location at addrss E8H, extended external interrupt INT2/INT3).

Port drive capability
STC12C5A608S2 series 1/0 port sink drive current is 20mA, has a strong drive capability, the port is not
burn out when drive high current generally. STC89 series I/O port sink drive current is only 6mA, is not
enough to drive high current. For the high current drive applications, it is strongly recommended to use
STC12C5A60S2 series MCU.

STC MCU Limited. website: www.STCMCU.com 437

www.STCMCU.com Mobile:(86)13922809991 Tel:086-755-82948412 Fax:86-755-82905966

WatchDog
STC12C5A60S2 series MCU’s watch dog timer control register (WDT_CONTR) is location at C1H, add
watch dog reset flag.

STC12C5A6082 series WDT_CONTR (C1H)

Mnemonic [Add| Name Bit7 |Bit6| Bit5 Bit4 Bir3 |Bit2 |Bitl | Bit0 5:185;
‘Wact-Dog-
'WDT _CONTR| Clh | Timer Control [WDT FLAG| - |EN_WDT|CLR WDT [IDL WDT| PS2 | PS1 | PSO [xx00,0000
register
STC89 series WDT CONTR (E1H)
Mnemonic |Add Name Bit7|Bit6| Bit5 Bit4 Bir3 | Bit2 [Bitl| Bit0 | Reset Value
Wact-Dog-Timer
WDT CONTR| Elh . - - |EN_WDT|CLR WDT |IDL WDT| PS2 | PS1 | PSO xx00,0000
- Control register - — -

STC12C5A60S2 series MCU auto enable watch dog timer after ISP upgrade, but not in STC89 series, so
STC12C5A608S2 series’s watch dog is more reliable.

EEPROM
SFR associated with EEPROM

Mnemonic STC12Cxx__| STC89xx Description
Address
IAP DATA C2H E2H ISP/IAP Flash data register
IAP ADDRH C3H E3G ISP/IAP Flash HIGH address register
IAP ADDRL C4H E4H ISP/IAP Flash LOW address register
IAP CMD C5H E5SH ISP/IAP Flash command register
IAP TRIG CoH E6H ISP/IAP command trigger register
IAP CONTR C7H E7H ISP/IAP control register

STC12C5A608S2 series write SAH and ASH sequential to trigger EEPROM flash command, and STC89 series
write 46H and BOH sequential to trigger EEPROM flash command.
STC12C5A608S2 series EEPROM start address all location at 0000H, but STCS89 series is not.

Internal/external clock source
STC12C5A608S2 series MCU has a optional internal RC oscillator, Generally, for 40/44 pin package MCU,
set to use external crystal oscillator and for 20/18/16 pin package set to use internl RC oscillator in factory.
When use ISP download program, user can arbitrarily choose internal RC oscilator or external crystal
oscillator. STC89 series MCU can only choose external crystal oscillator.

Power consumption
Power consumption consists of two parts: crystal oscillator amplifier circuits and digital circuits. For
crystal oscillator amplifier circuits, STC12C5A60S2 series is lower then STC89 series. For digital circuits,
the higher clock frequency, the greater the power consumption. STC12C5A60S2 series MCU instruction
execution speed is faster than theSTC89 series MCU 3~24 times in the same working environment, so if you
need to achieve the same efficiency, STC12C5A608S2 series required frequency is lower than STC89 series
MCU.

PowerDown Wakeup
STC12C5Axx series MCU wake-up support for low level or falling edge depend on the external interrupt
mode, but STC89 series only support for low level. In addition, STC12C5Axx series have a Optional power-
down wake-up delay length : 32768 / 16384 / 8192 / 4096 clocks .

438 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922809991 Tel:86-755-82948412 Fax:86-755-82905966

About reset circuit
If the system frequency is below 12MHz, the external reset circuit is not required. Reset pin can be connected
to ground through the 1K resistor or can be connected directly to ground. The proposal to create PCB to
retain RC reset circuit

About Clock oscillator
If you need to use internal RC oscillator, XTAL1 pin and XTAL2 pin must be floating. If you use a external
active crystal oscillator, clock signal input from XTAL1 pin and XTAL2 pin floating.

About power
Power at both ends need to add a 47uF electrolytic capacitor and a 0.1uF capacitor, to remove the coupling
and filtering.

STC MCU Limited. website: www.STCMCU.com 439

	Chapter 1. Introduction
	1.1 Features
	1.2 Block diagram
	1.3 Pin Configurations
	1.4 STC12C5A60S2 series Selection Table
	1.5 STC12C5A60S2 series Minimum Application System
	1.6 STC12C5A60S2 series Application Circuit for ISP
	1.7 Pin Descriptions
	1.8 Package Dimension Drawings
	1.9 STC12C5A60S2 series MCU naming rules
	1.10 Global Unique Identification Number (ID)

	Chapter 2. Clock, Power Management and Reset
	2.1 Clock
	2.1.1 On-Chip R/C Clock and External Crystal/Clcok are Optional in STC-ISP.exe
	2.1.2 Divider for System Clock
	2.1.3 How to Know Internal RC Oscillator frequency(Internal clock frequency)
	2.1.4 Programmable Clock Output
	2.1.4.1 Timer 0 Programmable Clock-out on P3.4
	2.1.4.2 Timer 1 Programmable Clock-out on P3.5
	2.1.4.3 Baud Rate Generator and Programmable Clock Output on P1.0

	2.2 Power Management Modes
	2.2.1 Slow Down Mode
	2.2.2 Idle Mode
	2.2.3 Stop / Power Down (PD) Mode

	2.3 RESET Sources
	2.3.2 External Low Voltage Detection Reset (high reliable Reset, RST2 pin Reset)
	2.3.3 External Low Voltage Detection if not be used RST2 can be as Interrupt
	2.3.4 Software RESET
	2.3.5 Power-On Reset (POR)
	2.3.5 MAX810 power-on-Reset delay
	2.3.3 Watch-Dog-Timer
	2.3.8 Warm Boot and Cold Boot Reset

	Chapter 3. Memory Organization
	3.1 Program Memory
	3.2 Data Memory
	3.2.1 On-chip Scratch-Pad RAM
	3.2.2 Auxiliary RAM
	3.2.3 External Expandable 64KB RAM (Off-Chip RAM)

	3.3 Special Function Registers
	3.3.1 Special Function Registers Address Map
	3.3.2 Special Function Registers Bits Description
	3.3.3 Dual Data Pointer Register (DPTR)

	Chapter 4. Configurable I/O Ports of STC12C5A60S2 series
	4.1 I/O Ports Configurations
	4.2 P4/P5 of STC12C5A60S2 series
	4.3 I/O ports Modes
	4.3.1 Quasi-bidirectional I/O
	4.3.2 Push-pull Output
	4.3.3 Input-only (High-Impedance)Mode
	4.3.4 Open-drain Output

	4.4 I/O port application notes
	4.5 Typical transistor control circuit
	4.6 Typical diode control circuit
	4.7 3V/5V hybrid system
	4.8 How to make I/O port low after MCU reset
	4.9 I/O status while PWM outputing
	4.10 I/O drive LED application circuit
	4.11 I/O immediately drive LED application circuit
	4.12 Using A/D Conversion to scan key application circuit

	Chapter 5. Instruction System
	5.1 Addressing Modes
	5.2 Instruction Set Summary
	5.3 Instruction Definitions

	Chapter 6. Interrupt System
	6.1 Interrupt Structure
	6.2 Interrupt Register
	6.3 Interrupt Priorities
	6.4 How Interrupts Are Handled
	6.5 External Interrupts
	6.6 Response Time
	6.7 Demo Programs about Interrupts (C and Assembly Programs)
	6.7.1 External Interrupt 0 (￼) Demo Programs (C and ASM)
	6.7.2 External Interrupt 1 (￼) Demo Programs (C and ASM)
	6.7.3 Programs of P3.4/T0/￼ Interrupt(falling edge) used to wake up PD mode
	6.7.4 Programs of P3.5/T1/￼ Interrupt(falling edge) used to wake up PD mode
	6.7.5 Program of P3.0/RxD/￼ Interrupt(falling edge) used to wake up PD mode
	6.7.6 Demo Program of Low Voltage Detection Interrupt used to wake up PD mode
	6.7.7 Program of PCA Interrupt used to wake up Power Down mode

	Chapter 7. Timer/Counter 0/1
	7.1 Special Function Registers about Timer/Counter
	7.2 Timer/Counter 0 Mode of Operation (Compatible with traditional 8051 MCU)
	7.2.1 Mode 0 (13-bit Timer/Counter)
	7.2.2 Mode 1 (16-bit Timer/Counter) and Demo Programs (C and ASM)
	7.2.3 Mode 2 (8-bit Auto-Reload Mode) and Demo Programs (C and Assembly Program)
	7.2.4 Mode 3 (Two 8-bit Timers/Couters)

	7.3 Timer/Counter 1 Mode of Operation
	7.3.1 Mode 0 (13-bit Timer/Counter)
	7.3.2 Mode 1 (16-bit Timer/Counter) and Demo Programs (C and ASM)
	7.3.3 Mode 2 (8-bit Auto-Reload Mode) and Demo Programs (C and ASM)

	7.4 Programmable Clock Output and Demo Programs (C and ASM)
	7.4.1 Timer 0 Programmable Clock-out on P3.4 and Demo Program(C and ASM)
	7.4.2 Timer 1 Programmable Clock-out on P3.5 and Demo Program(C and ASM)
	7.4.3 Baud Rate Generator Programmable Clock Output on P1.0 and Demo Program

	7.5 Application Notes for Timer in practice

	Chapter 8. Serial Interface (UART)
	8.1 UART with enhanced function
	8.1.1 Special Function Registers about UART1
	8.1.2 UART1 Operation Modes
	8.1.2.1 Mode 0: 8-Bit Shift Register
	8.1.2.2 Mode 1: 8-Bit UART with Variable Baud Rate
	8.1.2.3 Mode 2: 9-Bit UART with Fixed Baud Rate
	8.1.2.4 Mode3: 9-Bit UART with Variable Baud Rate

	8.1.3 Frame Error Detection
	8.1.4 Multiprocessor Communications
	8.1.5 Automatic Address Recognition
	8.1.6 Buad Rates and Demo Program
	8.1.7 Demo Programs about UART1 (C and ASM)

	8.2 Secondary UART (S2)
	8.2.1 Special Function Registers about S2 (UART2)
	8.2.3 UART2 Operation Modes
	8.2.3.1 Mode 0: 8-bit Shift Register
	8.2.3.2 Mode 1: 8-bit UART2 with Variable Baud-Rate
	8.2.3.3 Mode 2: 9-bit UART2 with Fixed Baud-Rate
	8.2.3.4 Mode 3: 9-bit UART2 with Variable Baud-Rate

	8.2.4 Demo Program about Secondary UART

	Chapter 9. Analog to Digital Converter
	9.1 A/D Converter Structure
	9.2 Registers for ADC
	9.3 Application Circuit of A/D Converter
	9.4 ADC Application Circuit for Key Scan
	9.5 A/D reference voltage source
	9.6 Program using interrupts to demostrate A/D Conversion
	9.7 Program using polling to demostrate A/D Conversion

	Chapter 10. Programmable Counter Array(PCA)
	10.2 SFRs related with PCA
	10.2 PCA/PWM Structure
	10.3 PCA Modules Operation Mode
	10.3.1 PCA Capture Mode
	10.3.2 16-bit Software Timer Mode
	10.3.3 High Speed Output Mode
	10.3.4 Pulse Width Modulator Mode (PWM mode)

	10.4 Programs for PCA module extended external interrupt (C and ASM)
	10.5 Demo Programs for PCA module acted as 16-bit Timer (C and ASM)
	10.6 Programs for PCA module as 16-bit High Speed Output(C and ASM)
	10.7 Demo Programs for PCA module as PWM Output (C and ASM)
	10.8 Demo Program for PCA clock base on Timer 1 overflow rate
	10.9 Using PWM achieve D/A Conversion function reference circuit

	Chapter 11. Serial Peripheral Interface (SPI)
	11.1 Special Function Registers related with SPI
	11.2 SPI Structure
	11.3 SPI Data Communication
	11.3.1 SPI Configuration
	11.3.2 SPI Data Communication Modes
	11.3.3 SPI Data Modes

	11.4 SPI Function Demo Programs (Single Master — Single Slave)
	11.4.1 SPI Function Demo Programs using Interrupts (C and ASM)
	11.4.2 SPI Function Demo Programs using Polling (C and ASM)

	11.5 SPI Function Demo Programs (Each other as the Master-Slave)
	11.5.1 SPI Function Demo Programs using Interrupts (C and ASM)
	11.5.2 SPI Function Demo Programs using Polling

	11.6 SPI Demo (Single Master Multiple Slave)

	Chapter 12. IAP / EEPROM
	12.1 IAP / EEPROM Special Function Registers
	12.2 STC12C5A60S2 series Internal EEPROM Allocation Table
	12.3 IAP/EEPROM Assembly Language Program Introduction
	12.4 EEPROM Demo Program (C and ASM)

	Chapter 13. STC12 series programming tools usage
	13.1 In-System-Programming (ISP) principle
	13.2 STC12C5A60S2 series application circuit for ISP
	13.3 PC side application usage
	13.4 Compiler / Assembler Programmer and Emulator
	13.5 Self-Defined ISP download Demo

	Appendix A: Assembly Language Programming
	Appendix B: 8051 C Programming
	Appendix C: STC12C5Axx series Electrical Characteristics
	Appendix D: Program for indirect addressing inner 256B RAM
	Appendix E: Using Serial port expand I/O interface
	Appendix F: Use STC MCU common I/O driving LCD Display
	Appendix G: LED driven by an I/O port and Key Scan
	Appendix H: How to reduce the Length of Code using Keil C
	Appendix I: Notes of STC12 series Replaced Traditional 8051

