

Sample &

Buy

TS3A5018

SCDS189G - JANUARY 2005 - REVISED MARCH 2015

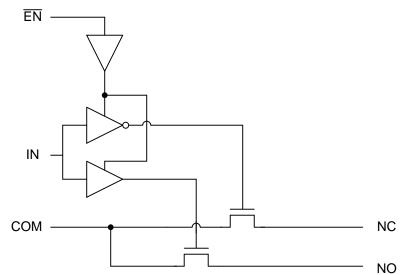
TS3A5018 10-Ω Quad SPDT Analog Switch

1 Features

- Low ON-State Resistance (10 Ω)
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 1.8-V to 3.6-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Mode (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Sample-and-Hold Circuits
- Battery-Powered Equipment
- Audio and Video Signal Routing
- Communication Circuits


3 Description

The TS3A5018 device is a quad single-pole doublethrow (SPDT) analog switch that is designed to operate from 1.8 V to 3.6 V. This device can handle digital and analog signals, and signals up to V₊ can be transmitted in either direction.

Device Information ⁽¹⁾							
PART NUMBER PACKAGE BODY SIZE (NON							
	SOIC (16)	9.90 mm × 6.00 mm					
	SSOP (16)	6.00 mm × 4.90 mm					
TS3A5018	TSSOP (16)	5.00 mm × 4.40 mm					
153A5016	TVSOP (16)	4.40 mm × 3.60 mm					
	UQFN (16)	2.50 mm × 1.80 mm					
	VQFN (16)	4.00 mm × 3.50 mm					

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Block Diagram

Table of Contents

1	Feat	ures 1
2	App	lications 1
3	Desc	cription 1
4	Revi	sion History 2
5	Pin (Configuration and Functions 3
6	Spee	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics for 3.3-V Supply5
	6.6	Electrical Characteristics for 2.5-V Supply 6
	6.7	Electrical Characteristics for 2.1-V Supply7
	6.8	Electrical Characteristics for 1.8-V Supply7
	6.9	Switching Characteristics for 3.3-V Supply
	6.10	Switching Characteristics for 2.5-V Supply
	6.11	Switching Characteristics for 1.8-V Supply
	6.12	31
7	Para	meter Measurement Information 13

8	Deta	iled Description	17
	8.1	Overview	
	8.2	Functional Block Diagram (Each Switch)	17
	8.3	Feature Description	17
	8.4	Device Functional Modes	17
9	App	lication and Implementation	18
	9.1	Application Information	18
	9.2	Typical Application	18
10	Pow	ver Supply Recommendations	19
11	Lay	out	19
	11.1	Layout Guidelines	19
	11.2	Layout Example	19
12	Dev	ice and Documentation Support	20
	12.1	Device Support	20
	12.2	Documentation Support	21
		Trademarks	
	12.4	Electrostatic Discharge Caution	21
	12.5	Glossary	21
13	Mec	hanical, Packaging, and Orderable	
-	Info	rmation	21

4 Revision History

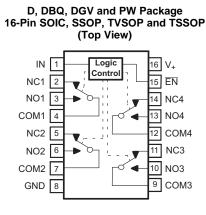
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

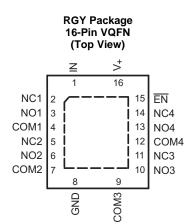
Changes from Revision F (June 2013) to Revision G

Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table,
Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
Mechanical, Packaging, and Orderable Information section1

Deleted Ordering Information table. 1 .

2


EXAS ISTRUMENTS


www.ti.com

Page

5 Pin Configuration and Functions

	16-	Pin	acka UQ Viev	FN	
	NC1	Z	+>	EN	
	16	115	114 14	13	
NO1	<u> </u>	J		[<u>1</u> 2]	NC4
COM1	27			[<u>1</u> 1_	NO4
NC2	<u>3</u>]			[<u>1</u> 0]	COM4
NO2	<u>4</u>]			[_9_	NC3
	ר ז 151	61	17	18 ¹	
	COM2	GND	COM3	NO3	

Pin Functions

	PIN			
NAME	SOIC, SSOP, TVSOP, VQFN NO.	UQFN NO.	TYPE	DESCRIPTION
COM1	4	2	I/O	Common path for switch
COM2	7	5	I/O	Common path for switch
COM3	9	7	I/O	Common path for switch
COM4	12	10	I/O	Common path for switch
EN	15	13	Ι	Active-low switch enable input
GND	8	6		Ground
IN	1	15	Ι	Switch path selector input
NC1	2	16	I/O	Normally closed path for switch
NC2	5	3	I/O	Normally closed path for switch
NC3	11	9	I/O	Normally closed path for switch
NC4	14	12	I/O	Normally closed path for switch
NO1	3	1	I/O	Normally open path for switch
NO2	6	4	I/O	Normally open path for switch
NO3	10	8	I/O	Normally open path for switch
NO4	13	11	I/O	Normally open path for switch
V+	16	14	_	Supply voltage

Copyright © 2005–2015, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

			MIN	MAX	UNIT
V ₊	Supply voltage ⁽³⁾		-0.5	4.6	V
V _{NC}					
V_{NO}	Analog voltage ⁽³⁾⁽⁴⁾		-0.5	4.6	V
V_{COM}					
Ι _Κ	Analog port diode current	$V_{NC}, V_{NO}, V_{COM} < 0$	-50		mA
I _{NC}					
I _{NO}	ON-state switch current	V_{NC} , V_{NO} , $V_{COM} = 0$ to 7 V	-64	64	mA
I _{COM}					
VI	Digital input voltage ⁽³⁾⁽⁴⁾		-0.5	4.6	V
I _{IK}	Digital input clamp current	V ₁ < 0	-50		mA
I+	Continuous current through V ₊		-100	100	mA
I _{GND}	Continuous current through GND		-100	100	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{(2)}$	±1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{I/O}	Switch input and output voltage	0	V ₊	V
V+	Supply voltage	1.65	3.6	V
VI	Control input voltage	0	3.6	V
T _A	Operating temperature	-40	85	°C

6.4 Thermal Information

				TS3/	45018			
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DBQ (SSOP)	DGV (TVSOP)	PW (TSSOP)	RGY (VQFN)	RSV (UQFN)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	73	90	120	108	51	184	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics for 3.3-V Supply

 V_{\star} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$

	PARAMETER	TEST CON	DITIONS	T _A	V.	MIN	TYP	MAX	UNIT
Analog Switch									_
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V ₊	V
	ON-state	$0 \le (V_{NC} \text{ or } V_{NO}) \le V_+,$	Switch ON,	25°C			7	10	
r _{on}	resistance	$I_{COM} = -32 \text{ mA},$	see Figure 17	Full	3 V			12	Ω
	ON-state	V_{NC} or $V_{NO} = 2.1$ V,	Switch ON,	25°C			0.3	0.8	
∆r _{on}	resistance match between channels	$I_{COM} = -32 \text{ mA},$	see Figure 17	Full	3 V			1	Ω
	ON-state	$0 \le (V_{NC} \text{ or } V_{NO}) \le V_+,$	Switch ON,	25°C			5	7	
r _{on(flat)}	resistance flatness	$I_{COM} = -32 \text{ mA},$	see Figure 17	Full	3 V			8	Ω
		V_{NC} or $V_{NO} = 1 V$,		25°C		-0.1	0.05	0.1	
		$V_{COM} = 3 V,$ or $V_{NC} \text{ or } V_{NO} = 3 V,$ $V_{COM} = 1 V,$	Switch OFF, see Figure 18	Full	3.6 V	-0.2		0.2	
NC(OFF),	NC, NO	$V_{\rm NC}$ or $V_{\rm NO} = 0$ to 3.6		25°C		-2	0.05	2	μA
I _{NO(OFF)}	OFF leakage current	V, $V_{COM} = 3.6 V \text{ to } 0,$ or $V_{NC} \text{ or } V_{NO} = 3.6 V \text{ to } 0,$ $V_{COM} = 0 \text{ to } 3.6 V,$	Switch OFF, see Figure 18	Full	0 V	-10		10	
		$V_{COM} = 1 V$,		25°C		-0.1	0.05	0.1	
		$V_{NC} \text{ or } V_{NO} = 3 \text{ V},$ or $V_{COM} = 3 \text{ V},$ $V_{NC} \text{ or } V_{NO} = 3 \text{ V},$	Switch OFF, see Figure 18	Full	3.6 V	-0.2		0.2	
I _{COM(OFF)}	COM OFF leakage current	$V_{COM} = 0$ to 3.6 V,		25°C		-2	0.05	2	μA
			Switch OFF, see Figure 18	Full	0 V	-10		10	
		V_{NC} or $V_{NO} = 1 V$,		25°C		-0.1	0.05	0.1	
I _{NC(ON)} , I _{NO(ON)}	NC, NO ON leakage current	$\label{eq:V_COM} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NC} \ or \ V_{NO} = 3 \ V, \\ V_{COM} = Open, \end{array}$	Switch ON, see Figure 19	Full	3.6 V	-0.2		0.2	μA
	2014	$V_{COM} = 1 V,$		25°C		-0.1	0.05	0.1	
I _{COM(ON)}	COM ON leakage current	$\label{eq:VNC} \begin{array}{l} V_{NC} \mbox{ or } V_{NO} = \mbox{ Open,} \\ \mbox{ or } \\ V_{COM} = 3 \ V, \\ V_{NC} \mbox{ or } V_{NO} = \mbox{ Open,} \end{array}$	Switch ON, see Figure 19	Full	3.6 V	-0.2		0.2	μA
V _{IH}	Input logic high			Full		2		V ₊	V
VIL	Input logic low			Full		0		0.8	V
I _{IH} , I _{IL}	Input leakage current	$V_1 = V_+$ or 0		25°C	3.6 V	-1	0.05	1	μA
				Full		-1		1	·
Q _C	Charge injection		C _L = 0.1 nF, see Figure 26	25°C	3.3 V		2		рС
$C_{NC(OFF)}, C_{NO(OFF)}$	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch OFF, see Figure 20	25°C	3.3 V		4.5		pF
$C_{\text{COM}(\text{OFF})}$	COM OFF capacitance	$V_{COM} = V_{+} \text{ or } GND,$	Switch OFF, see Figure 20	25°C	3.3 V		9		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch ON, see Figure 20	25°C	3.3 V		16		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{+} \text{ or } GND,$	Switch ON, see Figure 20	25°C	3.3 V		16		pF

(1) The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Electrical Characteristics for 3.3-V Supply (continued)

$V_{+} = 3 \text{ V to } 3.6 \text{ V}, T_{A} = -40^{\circ}\text{C to } 85^{\circ}\text{C}$ (unless of	otherwise noted) ⁽¹⁾
--	---------------------------------

	PARAMETER	TEST C	ONDITIONS	TA	V.	MIN TYP MAX	UNIT
Cı	Digital input capacitance	$V_I = V_+ \text{ or } GND,$	See Figure 20	25°C	3.3 V	3	pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON, see Figure 22	25°C	3.3 V	300	MHz
O _{ISO}	OFF isolation	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 10 \ MHz, \end{array}$	Switch OFF, see Figure 23	25°C	3.3 V	-48	dB
X _{TALK}	Crosstalk	$\begin{array}{l} R_{L}=50\ \Omega,\\ f=10\ MHz, \end{array}$	Switch ON, see Figure 24	25°C	3.3 V	-48	dB
X _{TALK(ADJ)}	Crosstalk adjacent	$\begin{array}{l} R_{L}=50\ \Omega,\\ f=10\ MHz, \end{array}$	Switch ON, see Figure 25	25°C	3.3 V	-81	dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, see Figure 27	25°C	3.3 V	0.21%	
	Depitive events everent			25°C	261/	2.5 7	
I ₊	Positive supply current	$V_I = V_+ \text{ or GND},$	Switch ON or OFF	Full	3.6 V	10	μA

6.6 Electrical Characteristics for 2.5-V Supply

$V_{+} = 2.3 \text{ V}$ to 2.7 V, $T_{A} = -$	–40°C to 85°C (unless)	otherwise noted) ⁽¹⁾
---	------------------------	---------------------------------

1	PARAMETER	TEST CO	NDITIONS	T _A	V.	MIN	TYP	MAX	UNIT
V _{COM} , V _{NC} , V _{NO}	Analog signal range					0		V+	V
r _{on}	ON-state resistance	$\label{eq:VNC} \begin{split} 0 &\leq (V_{\text{NC}} \text{ or } V_{\text{NO}}) \leq V_{*}, \\ I_{\text{COM}} &= -24 \text{ mA}, \end{split}$	Switch ON, see Figure 17	25°C Full	2.3 V		12	20 22	Ω
Δr _{on}	ON-state resistance match	V_{NC} or $V_{NO} = 1.6 V$, $I_{COM} = -24 \text{ mA}$,	Switch ON, see Figure 17	25°C	2.3 V		0.3	1	Ω
	between channels	$I_{COM} = -24 \text{ IIA},$	see Figure 17	Full				2	
r _{on(flat)}	ON-state resistance flatness	$\begin{array}{l} 0 \leq (V_{NC} \mbox{ or } V_{NO}) \ \leq V_{+}, \\ I_{COM} = -24 \ mA, \end{array}$	Switch ON, see Figure 17	25°C Full	2.3 V		14	18 20	Ω
		V_{NC} or $V_{NO} = 0.5 V$,		25°C		-0.1	0.05	0.1	
I _{NC(OFF)} ,	NC, NO	$V_{COM} = 2.2 V,$ or $V_{NC} \text{ or } V_{NO} = 2.2 V,$	Switch OFF, see Figure 18	Full	2.7 V	-0.2		0.2	
I _{NO(OFF)}	OFF leakage current	V_{NC} or $V_{NO} = 0$ to 3.6 V,		25°C		-2	0.05	2	μA
			Switch OFF, see Figure 18	Full	0 V	-10		10	
	СОМ	$ \begin{array}{l} V_{COM} = 0.5 \ V, \\ V_{NC} \ or \ V_{NO} = 2.2 \ V, \\ or \\ V_{COM} = 2.2 \ V, \\ V_{NC} \ or \ V_{NO} = 0.5 \ V, \end{array} $		25°C		-0.1	0.05	0.1	μA
			Switch OFF, see Figure 18	Full	2.7 V	-0.2		0.2	
COM(OFF)	OFF leakage current	$V_{COM} = 0$ to 3.6 V,		25°C		-2	0.05	2	
			Switch OFF, see Figure 18	Full	0 V	-10		10	
		V_{NC} or $V_{NO} = 0.5$ V,		25°C		-0.1	0.05	0.1	
I _{NC(ON)} , I _{NO(ON)}	NC, NO ON leakage current	$\label{eq:comparameters} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NC} \mbox{ or } V_{NO} = 2.2 \mbox{ V}, \\ V_{COM} = Open, \end{array}$	Switch ON, see Figure 19	Full	2.7 V	-0.2		0.2	μA
		V _{COM} = 0.5 V,		25°C		-0.1	0.05	0.1	
I _{COM(ON)}	COM ON leakage current	$\label{eq:VNC} \begin{array}{l} V_{NC} \mbox{ or } V_{NO} = \mbox{ Open,} \\ \mbox{ or } \\ V_{COM} = 2.2 \ V, \\ V_{NC} \mbox{ or } V_{NO} = \mbox{ Open,} \end{array}$	Switch ON, see Figure 19	Full	2.7 V	-0.2		0.2	μΑ
V _{IH}	Input logic high			Full		1.7		V ₊	V
V _{IL}	Input logic low			Full		0		0.7	V

(1) The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Electrical Characteristics for 2.5-V Supply (continued)

V ₊ = 2.3 V to 2.7 V, T	$_{A} = -40^{\circ}$ C to 85°C (unless	otherwise noted) ⁽¹⁾
------------------------------------	--	---------------------------------

	PARAMETER	TEST CON	DITIONS	TA	V.	MIN	TYP	MAX	UNIT
	Input lookago ourrent	$V_1 = V_+$ or 0		25°C	2.7 V	-0.1	0.05	0.1	
I _{IH} , I _{IL}	Input leakage current	$v_1 = v_+ \text{ or } 0$		Full	2.7 V	-1		1	μA
Q _C	Charge injection		C _L = 0.1 nF, see Figure 26	25°C	2.5 V		1		pC
$\begin{array}{c} C_{NC(OFF)},\\ C_{NO(OFF)} \end{array}$	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch OFF, see Figure 20	25°C	2.5 V		3		pF
C _{COM(OFF)}	COM OFF capacitance	$V_{COM} = V_{+} \text{ or GND},$	Switch OFF, see Figure 20	25°C	2.5 V		9		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch ON, see Figure 20	25°C	2.5 V		16		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{+} \text{ or GND},$	Switch ON, see Figure 20	25°C	2.5 V		16		pF
CI	Digital input capacitance	$V_1 = V_+ \text{ or GND},$	See Figure 20	25°C	2.5 V		3		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON, see Figure 22	25°C	2.5 V		300		MHz
O _{ISO}	OFF isolation	$ \begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 10 \ MHz, \end{array} $	Switch OFF, see Figure 23	25°C	2.5 V		-48		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 10 MHz,	Switch ON, see Figure 24	25°C	2.5 V		-48		dB
X _{TALK(ADJ)}	Crosstalk adjacent	$R_L = 50 \Omega,$ f = 10 MHz,	Switch ON, see Figure 25	25°C	3.3 V		81		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, see Figure 27	25°C	2.5 V		0.33%		
I_	Positive supply current	$V_1 = V_+$ or GND,	Switch ON or OFF	25°C	2.7 V		2.5	7	μA
	11,7 ****			Full				10	

6.7 Electrical Characteristics for 2.1-V Supply

 V_{+} = 2.00 V to 2.20 V, T_{A} = –40°C to 85°C (unless otherwise noted)^{(1)}

	PARAMETER	TEST CONDITIONS	T _A	٧,	MIN	TYP MAX	UNIT
VIH	Input logic high		Full		1.2	4.3	V
V _{IL}	Input logic low		Full		0	0.5	V

(1) The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

6.8 Electrical Characteristics for 1.8-V Supply

 V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PARA	METER	TEST CONDITIONS		TA	V.	MIN	TYP	MAX	UNIT
V_{COM}, V_{NC}, V_{NO}	Analog signal range					0		V+	V
_	ON-state	$0 \le (V_{NC} \text{ or } V_{NO}) \le V_+,$	Switch ON,	25°C	1.65 V		5.5	8	Ω
r _{on}	resistance	$I_{COM} = -32 \text{ mA},$	see Figure 17	Full	1.00 V			14.55	Ω
	ON-state			25°C			0.3	1	
Δr _{on}	resistance match between channels	V_{NC} or $V_{NO} = 1.5$ V, $I_{COM} = -32$ mA,	Switch ON, see Figure 17	Full	1.65 V			1.2	Ω
	ON-state	$0 \le (V_{NC} \text{ or } V_{NO}) \le V_{+},$	Switch ON,	25°C			2.7	5.5	_
r _{on(flat)}	resistance flatness	$I_{COM} = -32 \text{ mA},$	see Figure 17	Full	1.65 V			7.3	Ω

(1) The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

TEXAS INSTRUMENTS

www.ti.com

Electrical Characteristics for 1.8-V Supply (continued)

$V_{+} = 1.65$ V to 1.95 V, $T_{A} = -40^{\circ}$ C to 85°C (unless otherwise noted

P/	ARAMETER	TEST COM	NDITIONS	T _A	V.	MIN	TYP	MAX	UNIT
		$V_{NC} \text{ or } V_{NO} = 0.3 \text{ V},$ $V_{COM} = 1.65 \text{ V},$	Switch OFF,	25°C	-	-0.25	0.03	0.25	
I _{NC(OFF)} ,	NC, NO	or V_{NC} or V_{NO} = 1.65V, V_{COM} = 0.3 V,	or V_{NC} or V_{NO} = 1.65V, see Figure 18 V_{COM} = 0.3 V,	Full	1.95 V	-4.5		4.5	
I _{NO(OFF)}	OFF leakage current	V_{NC} or V_{NO} = 1.95 V to 0 V,		25°C		-0.4	0.01	0.4	μA
		$ \begin{array}{lll} V_{COM} = 0 \ V \ to \ 1.95 \ V, & Switch \ OFF, \\ or & & \\ V_{NC} \ or \ V_{NO} = 0 \ V \ to \ 1.95 \ V, & \\ V_{COM} = 1.95 \ V \ to \ 0 \ V, & \\ \end{array} $	Full	0 V	-6.5		6.5		
		V _{COM} = 1.65 V,		25°C		-0.4	0.02	0.4	
	COM OFF leakage	$ \begin{array}{l} V_{NC} \mbox{ or } V_{NO} = 0.3 \mbox{ V}, \\ \mbox{ or } \\ V_{COM} = 0.3 \mbox{ V}, \\ V_{NC} \mbox{ or } V_{NO} = 1.65 \mbox{ V}, \end{array} $	Switch OFF, see Figure 18	Full	1.95 V	-0.9		0.9	μA
I _{COM(OFF)}	current	$ \begin{array}{l} V_{COM} = 0 \ V \ to \ 1.95 \ V, \\ V_{NC} \ or \ V_{NO} = 1.95 \ V \ to \ 0 \ V, \\ or \\ V_{COM} = 1.95 \ V \ to \ 0, \\ V_{NC} \ or \ V_{NO} = 0 \ to \ 1.95 \ V, \end{array} \right. \\ \begin{array}{l} \text{Switch OFF,} \\ \text{see Figure 18} \\ V_{NC} \ or \ V_{NO} = 0 \ to \ 1.95 \ V, \end{array} $	25°C		-0.4	0.02	0.4	μΑ	
				Full	0 V	-4.5		4.5	
		V_{NC} or $V_{NO} = 0.3 V$,		25°C		-2.	0.02	2	
I _{NC(ON)} , I _{NO(ON)}	NC, NO ON leakage current	$\label{eq:VCOM} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NC} \mbox{ or } V_{NO} = 1.65 \mbox{ V}, \\ V_{COM} = Open, \end{array}$	Switch ON, see Figure 19	Full	1.95 V	-2	0.02	2	μA
		V _{COM} = 0.3 V,		25°C		-4.5		4.5	
I _{COM(ON)}	COM ON leakage current	$\label{eq:VNC} \begin{array}{l} V_{NC} \mbox{ or } V_{NO} = \mbox{ Open,} \\ \mbox{ or } \\ V_{COM} = 1.65 \mbox{ V,} \\ V_{NC} \mbox{ or } V_{NO} = \mbox{ Open,} \end{array}$	Switch ON, see Figure 19	Full	1.95 V				μA
V _{IH}	Input logic high	$V_I = V_+ \text{ or } GND$		Full	1.95 V	1		3.6	V
V _{IL}	Input logic low			Full	1.95 V	0		0.4	V
	Input leakage	$V_1 = V_+ \text{ or } 0$		25°C	1.05.1/	-0.1	0.01	0.1	
I _{IH} , I _{IL}	current	$v_1 = v_+ \text{ or } 0$		Full	1.95 V	-2.1		2.1	μA

6.9 Switching Characteristics for 3.3-V Supply

over operating free-air temperature range (unless otherwise noted)

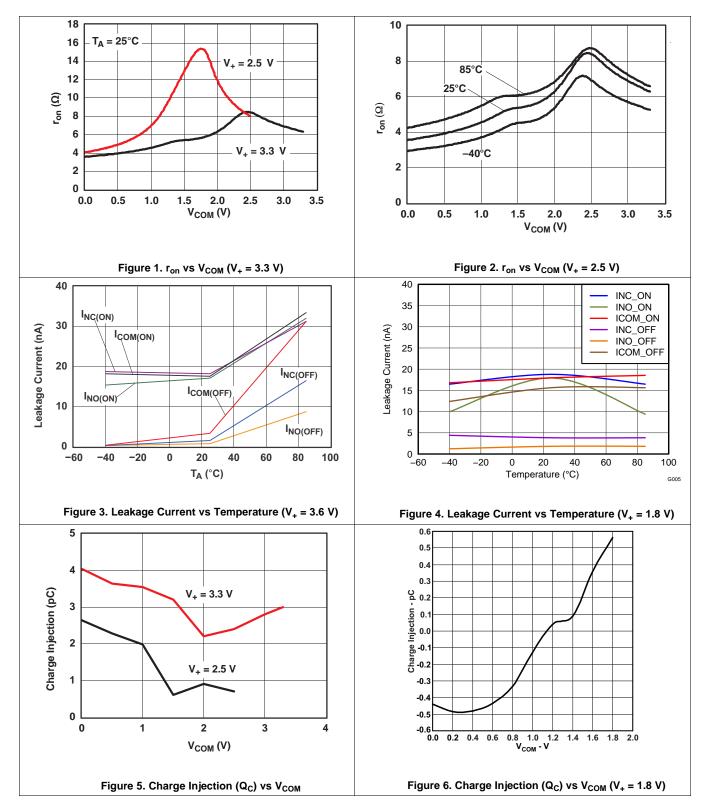
	PARAMETER TEST CONDITIONS			TA	٧.	MIN	TYP	MAX	UNIT
			25°C	3.3 V	2.5	3.5	8		
t _{ON}	Turnon time	$V_{COM} = 2 V, \\ R_{L} = 300 \Omega,$	C _L = 35 pF, see Figure 21	Full	3 V to 3.6 V	2.5		9	ns
		V 2.V		25°C	3.3 V	0.5	2	6.5	
t _{OFF}	Turnoff time	$V_{COM} = 2 V,$ $R_{L} = 300 \Omega,$	C _L = 35 pF, see Figure 21	Full	3 V to 3.6 V	0.5		7	ns

6.10 Switching Characteristics for 2.5-V Supply

over operating free-air temperature range (unless otherwise noted)

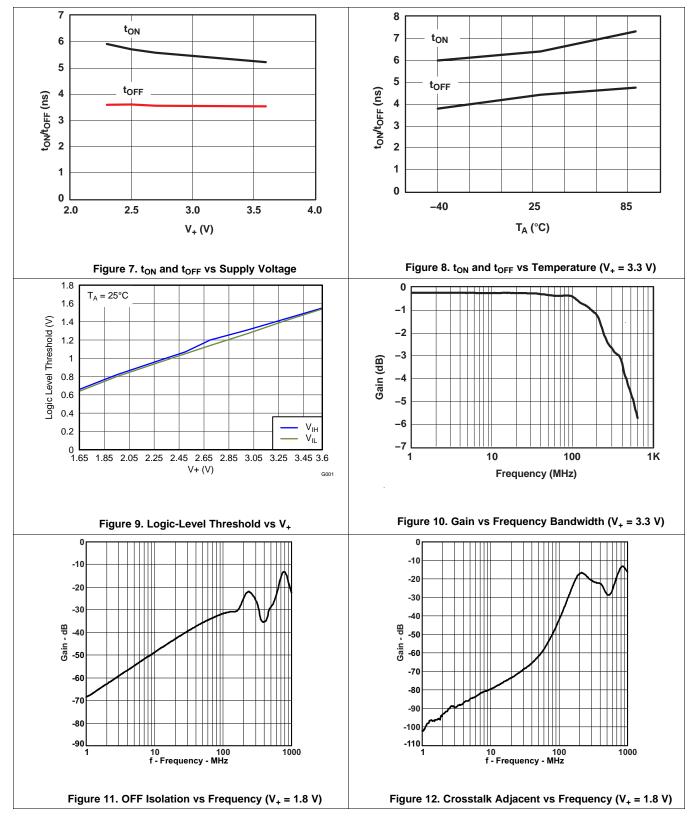
	PARAMETER	TEST CONDITIONS			V.	MIN	TYP	MAX	UNIT
	N				2.5 V	2.5	5	9.5	
t _{ON}	Turnon time	$V_{COM} = 1.5 \text{ V},$ R _L = 300 Ω,	C _L = 35 pF, see Figure 21	Full	2.3 V to 2.7 V	2.5		10.5	ns
			0 05 - 5	25°C	2.5 V	0.5	3	7.5	
t _{OFF}	Turnoff time	V_{COM} =1.5 V, R _L = 300 Ω,	C _L = 35 pF, see Figure 21	Full	2.3 V to 2.7 V	0.5		9	ns

6.11 Switching Characteristics for 1.8-V Supply


over operating free-air temperature range (unless otherwise noted)

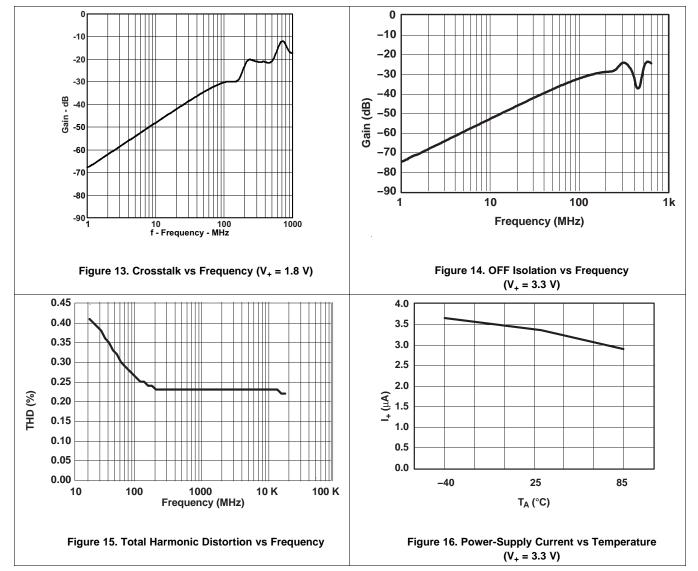
	PARAMETER	TEST	CONDITIONS	TA	V.	MIN	TYP	MAX	UNIT
				25°C	1.8 V		14.1	49.3	
t _{ON}	Turnon time	$V_{\rm COM} = V_+, \\ R_{\rm L} = 50 \ \Omega,$	C _L = 35 pF, see Figure 21	Full	1.65 V to 1.95 V		49.3	56.7	ns
				25°C	1.8 V		16.1	26.5	
t _{OFF}	Turnoff time		$C_L = 35 \text{ pF},$ see Figure 21	Full	1.65 V to 1.95 V			31.2	ns
				25°C	1.8 V	5.3	18.4	58	
t _{BBM}	Break-before- make time	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \ \Omega,$	$C_L = 35 \text{ pF},$ see Figure 21	Full	1.65 V to 1.95 V			58	ns

TEXAS INSTRUMENTS


www.ti.com

6.12 Typical Characteristics

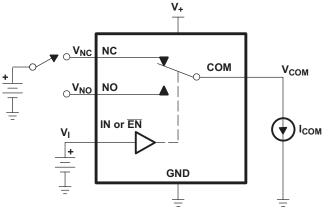
Typical Characteristics (continued)



TS3A5018 SCDS189G – JANUARY 2005 – REVISED MARCH 2015

www.ti.com

Typical Characteristics (continued)



Channel ON

 $V_I = V_{IH} \text{ or } V_{IL}$

 $r_{on} = \frac{V_{COM} - V_{NO} \text{ or } V_{NC}}{I_{COM}} \ \Omega$

7 Parameter Measurement Information

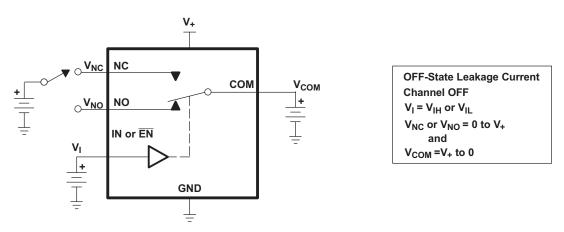


Figure 18. OFF-State Leakage Current (I_{COM(OFF)}, I_{NC(OFF)}, I_{NO(OFF)})

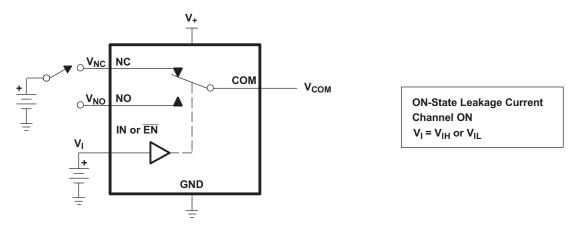
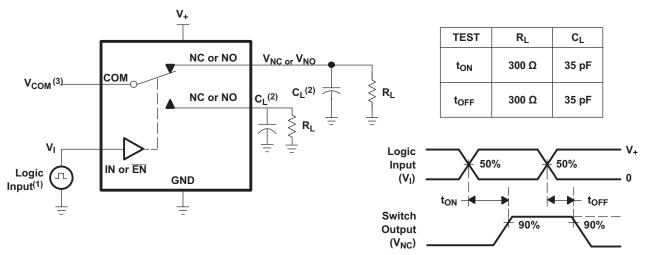
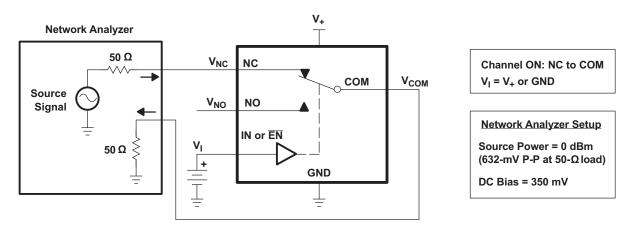



Figure 19. ON-State Leakage Current (I_{COM(ON)}, I_{NC(ON)})

V+ V_{NC} NC Capacitance V_{BIAS} = V₊ or GND Meter VNO NO $V_I = V_{IH} \text{ or } V_{IL}$ о<mark>V_{сом}</mark> сом Capacitance is measured at NC, V_{BIAS} NO, COM, and IN inputs during $\mathbf{v}_{\mathbf{l}}$ ON and OFF conditions. IN or EN GND


Parameter Measurement Information (continued)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.
- (3) See Electrical Characteristics for V_{COM} .

ISTRUMENTS

ÈXAS

www.ti.com

Parameter Measurement Information (continued)

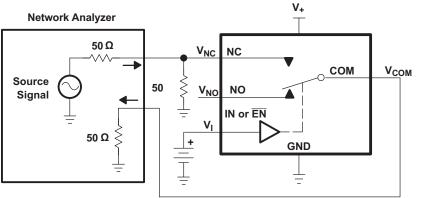
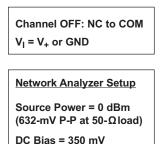



Figure 23. OFF Isolation (O_{ISO})

Channel ON: NC to COM Channel OFF: NO to COM V_I = V₊ or GND

Network Analyzer Setup Source Power = 0 dBm (632-mV P-P at 50-Ωload) DC Bias = 350 mV

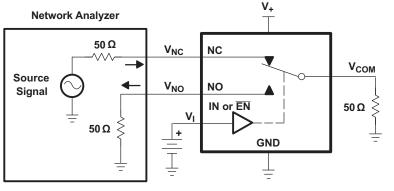


Figure 24. Crosstalk (X_{TALK})

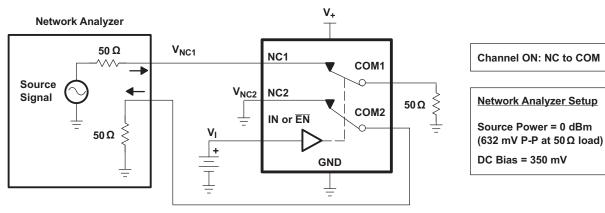
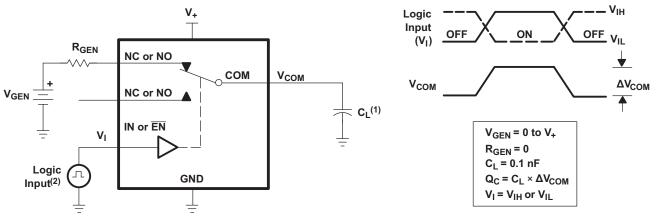
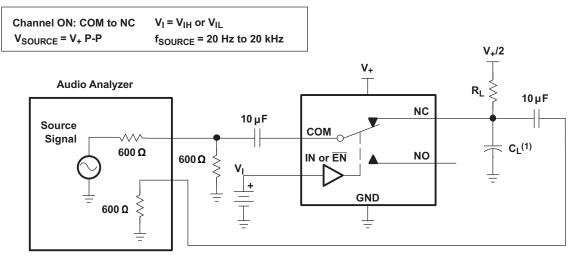



Figure 25. Crosstalk Adjacent

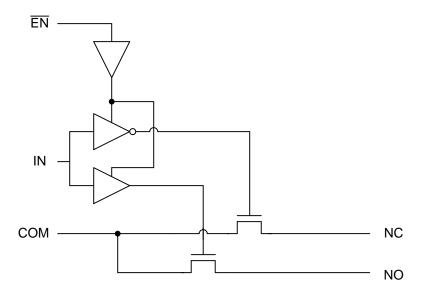
NSTRUMENTS


EXAS

- (1) C_L includes probe and jig capacitance.
- (2) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.

(1) C_L includes probe and jig capacitance.

Figure 27. Total Harmonic Distortion (THD)


8 Detailed Description

8.1 Overview

The TS3A5018 is a quad single-pole-double-throw (SPDT) solid-state analog switch. The TS3A5018, like all analog switches, is bidirectional. When powered on, each COM pin is connected to its respective NC pin. For this device, NC stands for *normally closed* and NO stands for *normally open*. The switch is enabled when EN is low. If IN is also low, COM is connected to NC. If IN is high, COM is connected to NO.

The TS3A5018 is a break-before-make switch. This means that during switching, a connection is broken before a new connection is established. The NC and NO pins are never connected to each other.

8.2 Functional Block Diagram (Each Switch)

8.3 Feature Description

The low ON-state resistance, ON-state resistance matching, and charge injection in the TS3A5018 make this switch an excellent choice for analog signals that require minimal distortion. In addition, the low THD allows audio signals to be preserved more clearly as they pass through the device.

The 1.8-V to 3.6-V operation allows compatibility with more logic levels, and the bidirectional I/Os can pass analog signals from 0 V to V_{+} with low distortion.

8.4 Device Functional Modes

EN	IN	NO TO COM, COM TO NO	NC TO COM, COM TO NC
L	L	OFF	ON
L	Н	ON	OFF
Н	Х	OFF	OFF

Table 1. Function Table

Texas Instruments

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TS3A5018 can be used in a variety of customer systems. The TS3A5018 can be used anywhere multiple analog or digital signals must be selected to pass across a single line.

9.2 Typical Application

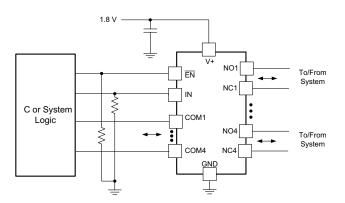


Figure 28. System Schematic for TS3A5018

9.2.1 Design Requirements

In this particular application, V_+ was 1.8 V, although V_+ is allowed to be any voltage specified in *Recommended Operating Conditions*. A decoupling capacitor is recommended on the V+ pin. See *Power Supply Recommendations* for more details.

9.2.2 Detailed Design Procedure

In this application, EN and IN are, by default, pulled low to GND. Choose these resistor sizes based on the current driving strength of the GPIO, the desired power consumption, and the switching frequency (if applicable). If the GPIO is open-drain, use pullup resistors instead.

9.2.3 Application Curve

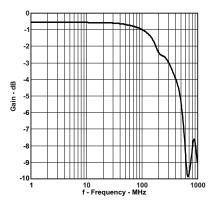


Figure 29. Gain vs Frequency Bandwidth ($V_{+} = 1.8 V$)

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F bypass capacitor is recommended. If there are multiple pins labeled V_{CC}, then a 0.01- μ F or 0.022- μ F capacitor is recommended for each V_{CC} because the VCC pins will be tied together internally. For devices with dual supply pins operating at different voltages, for example V_{CC} and V_{DD}, a 0.1- μ F bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self–inductance of the trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Below figure shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

Unused switch I/Os, such as NO, NC, and COM, can be left floating or tied to GND. However, the IN and \overline{EN} pins must be driven high or low. Due to partial transistor turnon when control inputs are at threshold levels, floating control inputs can cause increased I_{CC} or unknown switch selection states.

11.2 Layout Example

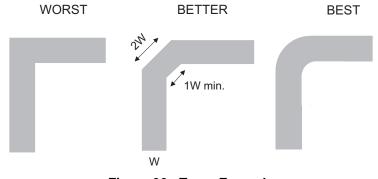


Figure 30. Trace Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Nomenclature

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ioltage at COM ioltage at NC ioltage at NO tesistance between COM and NC or NO ports when the channel is ON tifference of r _{on} between channels in a specific device tifference between the maximum and minimum value of r _{on} in a channel over the specified range of conditions eakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state eakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the COM port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
$\begin{array}{c c} V_{NO} & Vol \\ \hline r_{on} & Res \\ \hline \Delta r_{on} & Diff \\ \hline r_{on(flat)} & Diff \\ \hline I_{NC(OFF)} & Lea \\ \hline I_{NC(OFF)} & Lea \\ \hline I_{NO(OFF)} & Lea \\ \hline I_{NO(OFF)} & Lea \\ \hline I_{NO(ON)} & Lea \\ \hline I_{COM(OFF)} & Lea \\ \hline I_{COM(OFF)} & Lea \\ \hline I_{COM(ON)} & Lea \\ \hline U_{ICOM(ON)} & U_{ICOM(ON$	Toltage at NO Resistance between COM and NC or NO ports when the channel is ON Difference of r _{on} between channels in a specific device Difference between the maximum and minimum value of r _{on} in a channel over the specified range of conditions eakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state eakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output COM) open eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
$\begin{tabular}{ c c c c c } \hline r_{on} & Rest \\ \hline r_{on} & Diff \\ \hline r_{on(flat)} & Lea \\ \hline r_{On(OFF)} & Lea \\ \hline r_{On(OFF)$	tesistance between COM and NC or NO ports when the channel is ON ifference of r _{on} between channels in a specific device ifference between the maximum and minimum value of r _{on} in a channel over the specified range of conditions eakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state eakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output COM) open eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the COM port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
Δr _{on} Diff r _{on(flat)} Diff I _{NC(OFF)} Lea I _{NC(ON)} Lea I _{NO(OFF)} Lea I _{NO(OFF)} Lea I _{NO(OFF)} Lea I _{COM(OFF)} Lea I _{COM(OFF)} Lea I _{COM(ON)} Lea V _{IH} Mir V _{IL} Ma V _I Vol I _{IH} , I _{IL} Lea t _{au} Tur	ifference of r _{on} between channels in a specific device ifference between the maximum and minimum value of r _{on} in a channel over the specified range of conditions eakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state eakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output COM) open eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
ron(flat) Diff INC(OFF) Lea INC(ON) Lea INC(ON) Lea INO(OFF) Lea INO(ON) Lea ICOM(OFF) Lea ICOM(OFF) Lea ICOM(OFF) Lea ICOM(OFF) Lea VIH Mir VIH Mir VIH Vol IIH, IIL Lea tout Tur	ifference between the maximum and minimum value of r _{on} in a channel over the specified range of conditions eakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state eakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output COM) open eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
$eq:linear_line$	eakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state eakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output COM) open eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output COM) open eakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output cOM) open eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
INC(ON) Lea (CC INO(OFF) Lea INO(OFF) Lea ICOM(OFF) Lea ICOM(OFF) Lea ICOM(ON) Lea VIH Mir VIH Mar VIL Mar VI Vol IIH, IIL Lea	eakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output COM) open eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output COM) open eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
INC(ON) (CC INO(OFF) Lea INO(ON) Lea ICOM(OFF) Lea ICOM(OFF) Lea ICOM(ON) Lea VIH Mir VIH Mar VIH Mar VI Vol IIH, IIL Lea Tur Tur	COM) open eakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state eakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output COM) open eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
IND(ON) IND(ON) Lea (CC ICOM(OFF) Lea Out VIH Mir VIH Mir VIL Ma VI VIL Lea Out UIL Ma VI VII Lea Out Tur Tur Tur	eakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output COM) open eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
INO(ON) (CC I _{COM(OFF)} Lea I _{COM(ON)} Lea V _{IH} Mir V _{IL} Ma V _I Vol I _{IH} , I _{IL} Lea tau Tur	COM) open eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
I _{COM(ON)} Lea out V _{IH} Mir V _{IL} Ma V _I Vol I _{IH} , I _{IL} Lea tau Tur	
ICOM(ON) out VIH Mir VIL Ma VI Vol IIH, IIL Lea tout Tur	eakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the ON state and the
VIL Ma VI Vol IIH, IIL Lea tau Tur	utput (NC or NO) open
V _I Vol I _{IH} , I _{IL} Lea	linimum input voltage for logic high for the control input (IN, EN)
I _{IH} , I _{IL} Lea	faximum input voltage for logic low for the control input (IN, EN)
terr Tur	oltage at the control input (IN, EN)
	eakage current measured at the control input (IN, EN)
del	urnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation elay between the digital control (IN) signal and analog output NC or NO) signal when the switch is turning ON.
	urnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation elay between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF.
Q _C out	harge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC or NO) utput. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. There injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage.
C _{NC(OFF)} Ca	apacitance at the NC port when the corresponding channel (NC to COM) is OFF
	apacitance at the NC port when the corresponding channel (NC to COM) is ON
C _{NO(OFF)} Ca	apacitance at the NC port when the corresponding channel (NO to COM) is OFF
C _{NO(ON)} Ca	apacitance at the NC port when the corresponding channel (NO to COM) is ON
C _{COM(OFF)} Ca	apacitance at the COM port when the corresponding channel (COM to NC) is OFF
C _{COM(ON)} Ca	apacitance at the COM port when the corresponding channel (COM to NC) is ON
	apacitance of control input (IN, EN)
	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific equency, with the corresponding channel (NC to COM) in the OFF state.
X _{TALK} cro	crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent rosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is neasured in a specific frequency and in dB.
BW Bar	andwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD me	otal harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root
I ₊ Sta	nean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental armonic.

Table 2. Parameter Description

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation, see the following:

• Implications of Slow or Floating CMOS Inputs, SCBA004

12.3 Trademarks

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS3A5018D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS3A5018	Samples
TS3A5018DBQR	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YA018	Samples
TS3A5018DBQRE4	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YA018	Samples
TS3A5018DBQRG4	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YA018	Samples
TS3A5018DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS3A5018	Samples
TS3A5018DGVR	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YA018	Samples
TS3A5018DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS3A5018	Samples
TS3A5018DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS3A5018	Samples
TS3A5018PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YA018	Samples
TS3A5018PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YA018	Samples
TS3A5018PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YA018	Samples
TS3A5018PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YA018	Samples
TS3A5018RGYR	ACTIVE	VQFN	RGY	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YA018	Samples
TS3A5018RGYRG4	ACTIVE	VQFN	RGY	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	YA018	Samples
TS3A5018RSVR	ACTIVE	UQFN	RSV	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ZUN	Samples

(1) The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

10-Jun-2014

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

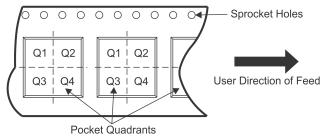
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

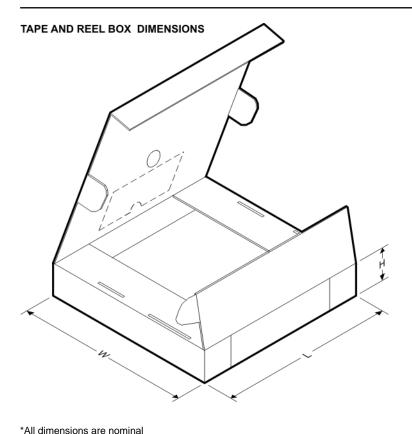

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

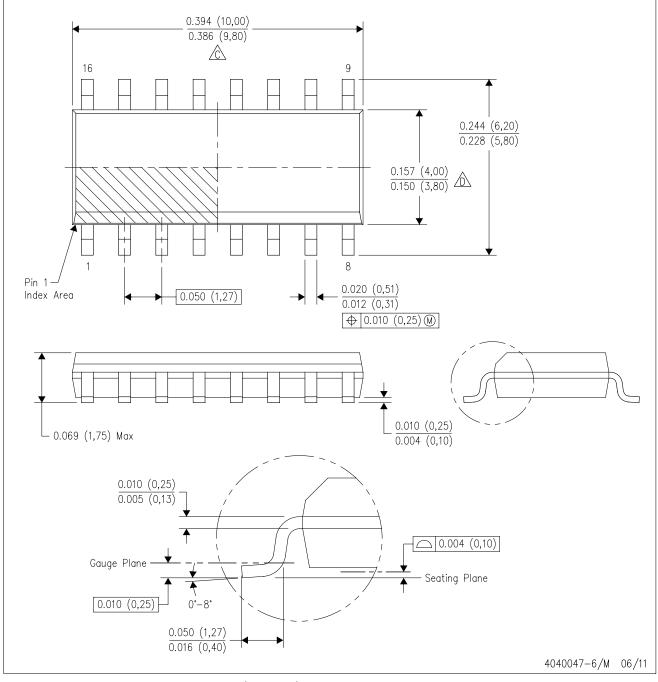
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3A5018DBQR	SSOP	DBQ	16	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
TS3A5018DGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
TS3A5018DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TS3A5018PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TS3A5018RGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1
TS3A5018RSVR	UQFN	RSV	16	3000	177.8	12.4	2.0	2.8	0.7	4.0	12.0	Q1
TS3A5018RSVR	UQFN	RSV	16	3000	180.0	13.2	2.1	2.9	0.75	4.0	12.0	Q1
TS3A5018RSVR	UQFN	RSV	16	3000	180.0	12.4	2.1	2.9	0.75	4.0	12.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION


3-Aug-2017

All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3A5018DBQR	SSOP	DBQ	16	2500	340.5	338.1	20.6
TS3A5018DGVR	TVSOP	DGV	16	2000	367.0	367.0	35.0
TS3A5018DR	SOIC	D	16	2500	333.2	345.9	28.6
TS3A5018PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
TS3A5018RGYR	VQFN	RGY	16	3000	367.0	367.0	35.0
TS3A5018RSVR	UQFN	RSV	16	3000	202.0	201.0	28.0
TS3A5018RSVR	UQFN	RSV	16	3000	184.0	184.0	19.0
TS3A5018RSVR	UQFN	RSV	16	3000	203.0	203.0	35.0

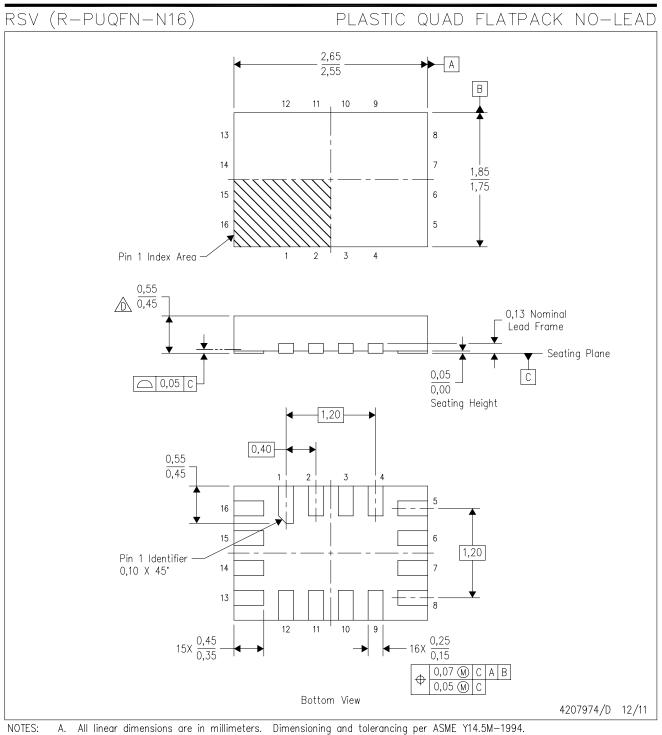
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

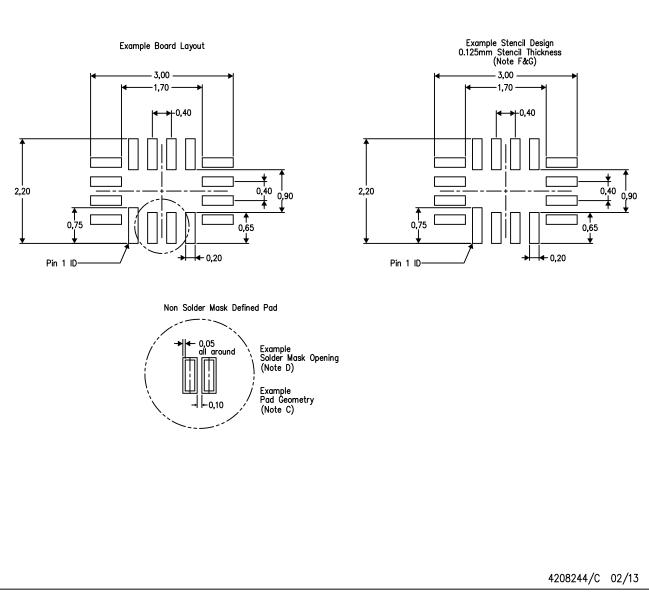
4211283-4/E 08/12


D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA


- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.

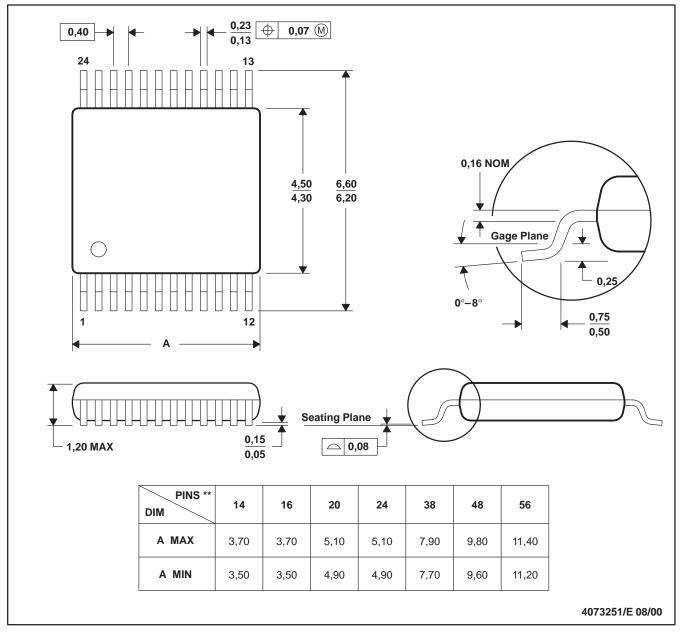
ightarrow This package complies to JEDEC MO-288 variation UFHE, except minimum package thickness.

RSV (R-PUQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

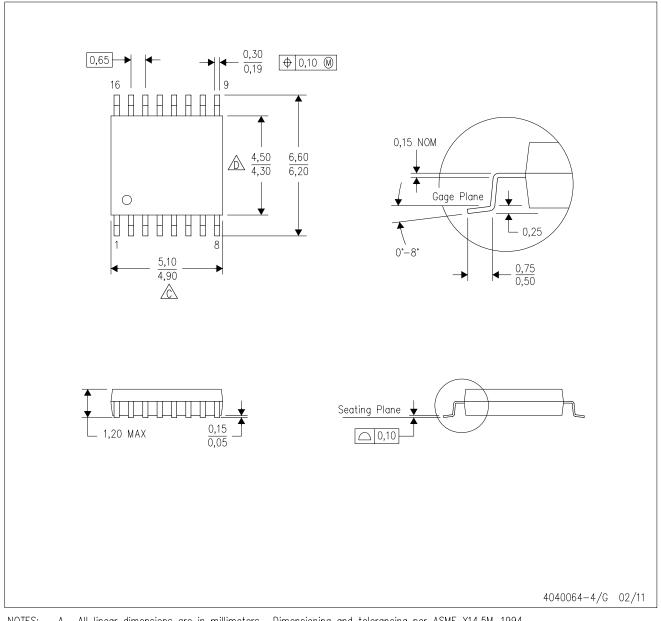
MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

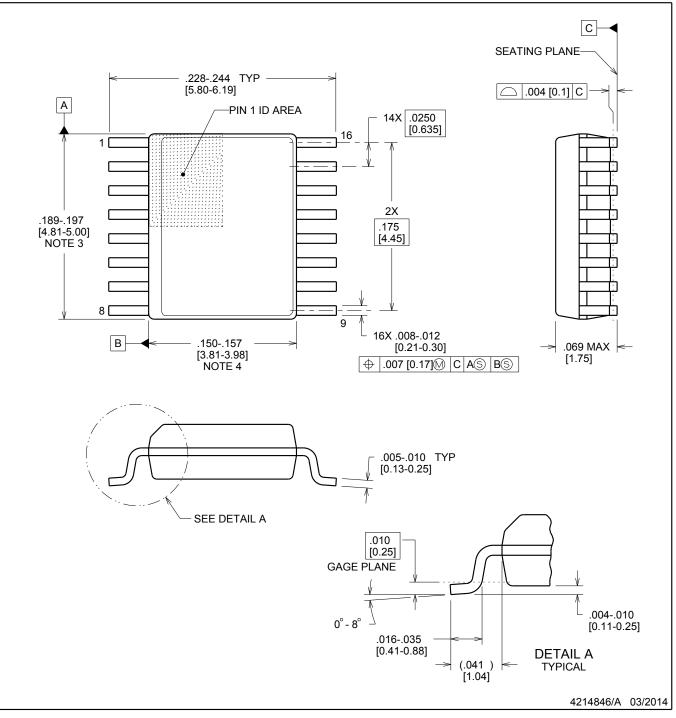
E. Falls within JEDEC MO-153

GENERIC PACKAGE VIEW

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DBQ0016A

PACKAGE OUTLINE

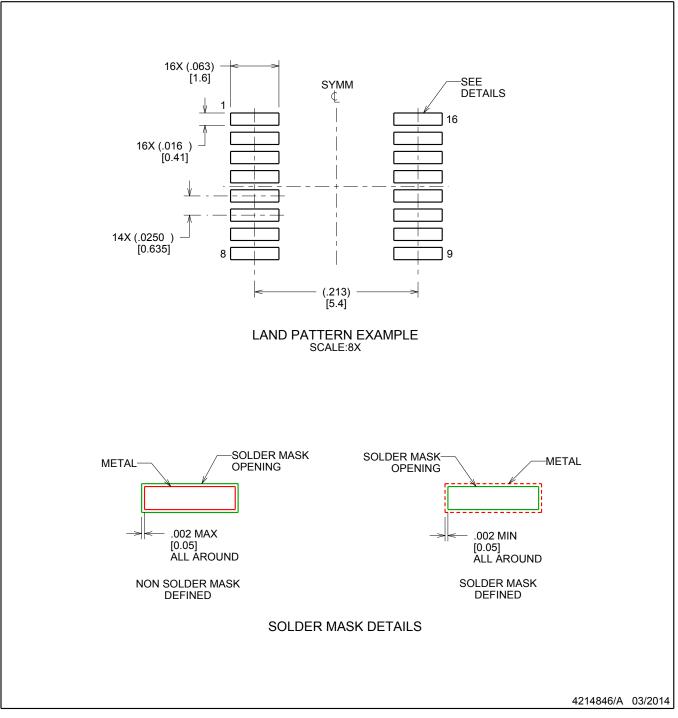
SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
- This dimension does not include interlead flash.
 Reference JEDEC registration MO-137, variation AB.



DBQ0016A

EXAMPLE BOARD LAYOUT

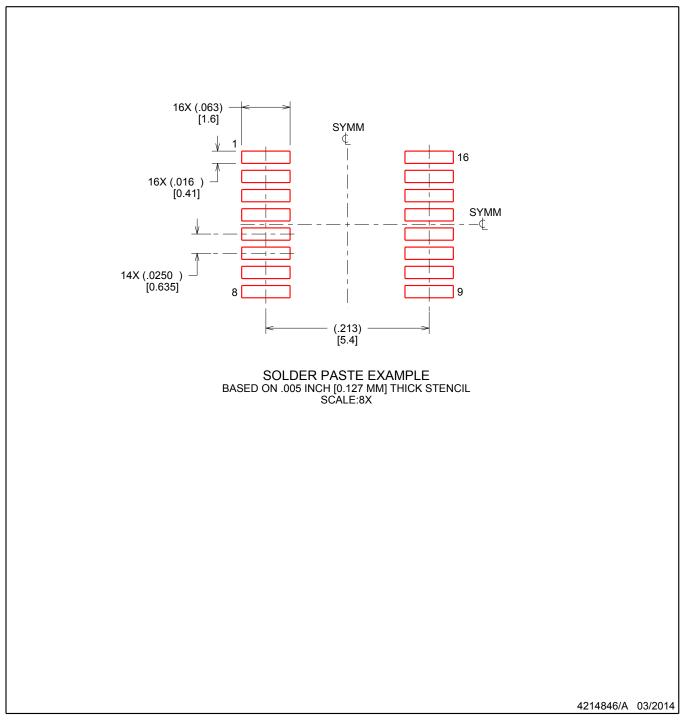
SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBQ0016A

EXAMPLE STENCIL DESIGN

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE


NOTES: (continued)

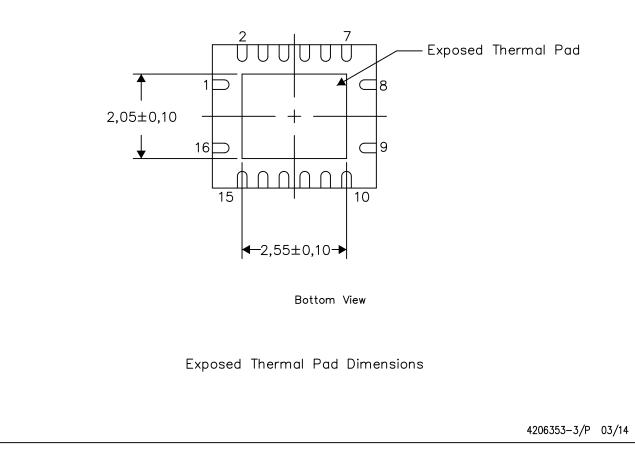
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

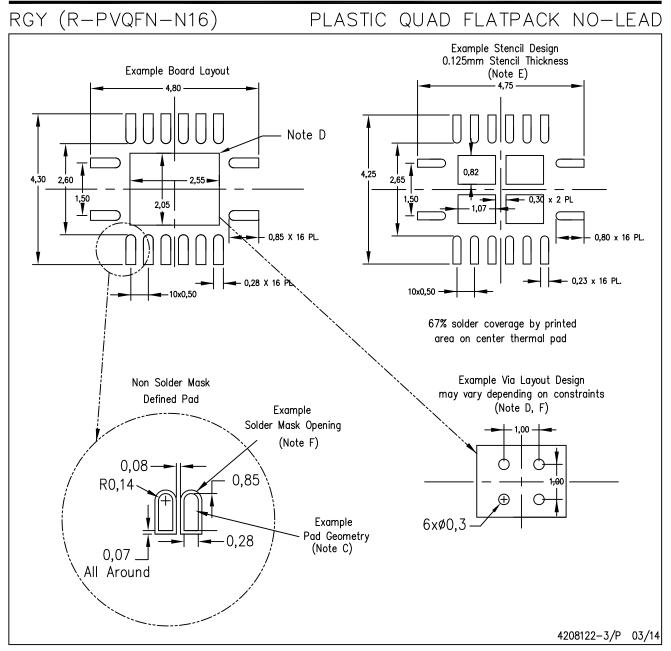
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- Ε. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Æ Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.

D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.

- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated